Abstract
Induction by mitomycin or high-temperature treatment resulted in the production of bacteriocins and phages in both phases of Xenorhabdus nematophilus A24, indicating lysogeny. Phage DNA purified from X. nematophilus A24 hybridized to several fragments of DraI-digested A24 chromosomal DNA, confirming that the phage genome was incorporated into the bacterial chromosome. Bacteriocins and phages were detected in cultures of most other Xenorhabdus spp. after mitomycin or high-temperature treatment. Xenorhabdus luminescens K80 was not lysed by these treatments, and no phages were seen associated with this strain. However, bacteriocins were detected in limited quantities in all Xenorhabdus cultures, including X. luminescens K80, without any induction. X. nematophilus A24 bacteriocins were antagonistic for other Xenorhabdus species but not for A24 or other strains of X. nematophilus.
Full text
PDF





Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akhurst R. J. Antibiotic activity of Xenorhabdus spp., bacteria symbiotically associated with insect pathogenic nematodes of the families Heterorhabditidae and Steinernematidae. J Gen Microbiol. 1982 Dec;128(12):3061–3065. doi: 10.1099/00221287-128-12-3061. [DOI] [PubMed] [Google Scholar]
- Akhurst R. J., Boemare N. E. A numerical taxonomic study of the genus Xenorhabdus (Enterobacteriaceae) and proposed elevation of the subspecies of X. nematophilus to species. J Gen Microbiol. 1988 Jul;134(7):1835–1845. doi: 10.1099/00221287-134-7-1835. [DOI] [PubMed] [Google Scholar]
- Bradley D. E. Ultrastructure of bacteriophage and bacteriocins. Bacteriol Rev. 1967 Dec;31(4):230–314. doi: 10.1128/br.31.4.230-314.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kageyama M., Shinomiya T., Aihara Y., Kobayashi M. Characterization of a bacteriophage related to R-type pyocins. J Virol. 1979 Dec;32(3):951–957. doi: 10.1128/jvi.32.3.951-957.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leclerc M. C., Boemare N. E. Plasmids and phase variation in Xenorhabdus spp. Appl Environ Microbiol. 1991 Sep;57(9):2597–2601. doi: 10.1128/aem.57.9.2597-2601.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McInerney B. V., Gregson R. P., Lacey M. J., Akhurst R. J., Lyons G. R., Rhodes S. H., Smith D. R., Engelhardt L. M., White A. H. Biologically active metabolites from Xenorhabdus spp., Part 1. Dithiolopyrrolone derivatives with antibiotic activity. J Nat Prod. 1991 May-Jun;54(3):774–784. doi: 10.1021/np50075a005. [DOI] [PubMed] [Google Scholar]
- McInerney B. V., Taylor W. C., Lacey M. J., Akhurst R. J., Gregson R. P. Biologically active metabolites from Xenorhabdus spp., Part 2. Benzopyran-1-one derivatives with gastroprotective activity. J Nat Prod. 1991 May-Jun;54(3):785–795. doi: 10.1021/np50075a006. [DOI] [PubMed] [Google Scholar]
- Poinar G. O., Jr, Hess R. T., Lanier W., Kinney S., White J. H. Preliminary observations of a bacteriophage infecting Xenorhabdus luminescens (Enterobacteriaceae). Experientia. 1989 Feb 15;45(2):191–192. doi: 10.1007/BF01954872. [DOI] [PubMed] [Google Scholar]
- Poinar G. O., Jr, Thomas G. M. Significance of Achromobacter nematophilus Poinar and Thomas (Achromobacteraceae: Eubacteriales) in the development of the nematode, DD-136 (Neoaplectana sp. Steinernematidae). Parasitology. 1966 May;56(2):385–390. doi: 10.1017/s0031182000070980. [DOI] [PubMed] [Google Scholar]
- Richardson W. H., Schmidt T. M., Nealson K. H. Identification of an anthraquinone pigment and a hydroxystilbene antibiotic from Xenorhabdus luminescens. Appl Environ Microbiol. 1988 Jun;54(6):1602–1605. doi: 10.1128/aem.54.6.1602-1605.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]