Abstract
Rhizobiophage V, isolated from soil in the vicinity of soybean roots, was strongly lytic on Bradyrhizobium japonicum 123B (USDA 123) but only mildly lytic on strain L4-4, a chemically induced small-colony mutant of 123. Numerous bacteriophage-resistant variants were isolated from L4-4 infected with phage V; two were studied in detail and shown to be lysogenic. The two, L4-4 (V5) and L4-4 (V12), are the first reported examples of temperate-phage infection in B. japonicum. Phage V and its derivative phages V5 and V12 were closely related on the basis of common sensitivity to 0.01 M sodium citrate and phage V antiserum, phage immunity tests, and apparently identical morphology when examined by electron microscopy. However, the three phages differed in host range and in virulence. Lysogens L4-4 (V5) and L4-4 (V12) were immune to infection by phages V and V5 but not to infection by V12. Southern hybridization analysis confirmed the incorporation of phage V into the genomes of strains L4-4(V5) and L4-4(V12) and also demonstrated the incorporation of phage V into the genome of a phage V-resistant derivative of USDA 123 designated 123 (V2). None of the three lysogens, L4-4(V5), L4-4(V12), or 123B(V2), was able to nodulate soybean plants. However, Southern hybridization profile data indicated that phage V had not incorporated into any of the known B. japonicum nodulation genes.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barnet Y. M. Bacteriophages of Rhizobium trifolii. I. Morphology and host range. J Gen Virol. 1972 Apr;15(1):1–15. doi: 10.1099/0022-1317-15-1-1. [DOI] [PubMed] [Google Scholar]
- Bradley D. E. Ultrastructure of bacteriophage and bacteriocins. Bacteriol Rev. 1967 Dec;31(4):230–314. doi: 10.1128/br.31.4.230-314.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Casadesús J., Olivares J. General transduction in Rhizobium meliloti by a thermosensitive mutant of bacteriophage DF2. J Bacteriol. 1979 Jul;139(1):316–317. doi: 10.1128/jb.139.1.316-317.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Finan T. M., Hartweig E., LeMieux K., Bergman K., Walker G. C., Signer E. R. General transduction in Rhizobium meliloti. J Bacteriol. 1984 Jul;159(1):120–124. doi: 10.1128/jb.159.1.120-124.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- JACOB F., WOLLMAN E., SIMINOVITCH L. Propriétés inductrices des mutants virulents d'un phage tempéré. C R Hebd Seances Acad Sci. 1953 Feb 2;236(5):544–546. [PubMed] [Google Scholar]
- KAISER A. D. Mutations in a temperate bacteriophage affecting its ability to lysogenize Escherichia coli. Virology. 1957 Feb;3(1):42–61. doi: 10.1016/0042-6822(57)90022-3. [DOI] [PubMed] [Google Scholar]
- Kourilsky P. Lysogenization by bacteriophage lambda and the regulation of lambda repressor synthesis. Virology. 1971 Sep;45(3):853–857. doi: 10.1016/0042-6822(71)90213-3. [DOI] [PubMed] [Google Scholar]
- Kowalski M. Transducing phages of Rhizobium meliloti. Acta Microbiol Pol A. 1970;2(3):109–113. [PubMed] [Google Scholar]
- Kowalski M. Transduction in Rhizobium meliloti. Acta Microbiol Pol. 1967;16(1):7–11. [PubMed] [Google Scholar]
- Lotz W., Mayer F. Electron microscopical characterization of newly isolated Rhizobium lupini bacteriophages. Can J Microbiol. 1972 Aug;18(8):1271–1274. doi: 10.1139/m72-196. [DOI] [PubMed] [Google Scholar]
- Martin M. O., Long S. R. Generalized transduction in Rhizobium meliloti. J Bacteriol. 1984 Jul;159(1):125–129. doi: 10.1128/jb.159.1.125-129.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Reilly R. J., Lee F. K., Grossbard E., Kapoor N., Kirkpatrick D., Dinsmore R., Stutzer C., Shah K. V., Nahmias A. J. Papovavirus excretion following marrow transplantation: incidence and association with hepatic dysfunction. Transplant Proc. 1981 Mar;13(1 Pt 1):262–266. [PubMed] [Google Scholar]
- Pilacinski W. P., Schmidt E. L. Plasmid transfer within and between serologically distinct strains of Rhizobium japonicum, using antibiotic resistance mutants and auxotrophs. J Bacteriol. 1981 Feb;145(2):1025–1030. doi: 10.1128/jb.145.2.1025-1030.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SMITH H. W. Some observations on lysogenic strains of Salmonella. J Gen Microbiol. 1951 Aug;5(3):458–471. doi: 10.1099/00221287-5-3-458. [DOI] [PubMed] [Google Scholar]
- Sadowsky M. J., Cregan P. B., Gottfert M., Sharma A., Gerhold D., Rodriguez-Quinones F., Keyser H. H., Hennecke H., Stacey G. The Bradyrhizobium japonicum nolA gene and its involvement in the genotype-specific nodulation of soybeans. Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):637–641. doi: 10.1073/pnas.88.2.637. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sadowsky M. J., Tully R. E., Cregan P. B., Keyser H. H. Genetic Diversity in Bradyrhizobium japonicum Serogroup 123 and Its Relation to Genotype-Specific Nodulation of Soybean. Appl Environ Microbiol. 1987 Nov;53(11):2624–2630. doi: 10.1128/aem.53.11.2624-2630.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmidt E. L., Zidwick M. J., Abebe H. M. Bradyrhizobium japonicum Serocluster 123 and Diversity among Member Isolates. Appl Environ Microbiol. 1986 Jun;51(6):1212–1215. doi: 10.1128/aem.51.6.1212-1215.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sik T., Horváth J., Chatterjee S. Generalized transduction in Rhizobium meliloti. Mol Gen Genet. 1980;178(3):511–516. doi: 10.1007/BF00337855. [DOI] [PubMed] [Google Scholar]
- TAKAHASHI I., QUADLING C. Lysogeny in Rhizobium trifolii. Can J Microbiol. 1961 Aug;7:455–465. doi: 10.1139/m61-055. [DOI] [PubMed] [Google Scholar]
- Tsien H. C., Schmidt E. L. Accumulation of Soybean Lectin-Binding Polysaccharide During Growth of Rhizobium japonicum as Determined by Hemagglutination Inhibition Assay. Appl Environ Microbiol. 1980 Jun;39(6):1100–1104. doi: 10.1128/aem.39.6.1100-1104.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]




