Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1992 Oct;58(10):3437–3440. doi: 10.1128/aem.58.10.3437-3440.1992

Cloning of a creatinase gene from Pseudomonas putida in Escherichia coli by using an indicator plate.

M C Chang 1, C C Chang 1, J C Chang 1
PMCID: PMC183121  PMID: 1444379

Abstract

A genomic library of Pseudomonas putida DNA was constructed by using plasmid pBR322. Transformants of Escherichia coli in combination with Proteus mirabilis cells grown on creatinase test plates were screened for creatinase activity; transformants were considered positive for creatinase activity if a red-pink zone appeared around the colonies. One creatinase-positive clone was further analyzed, and the gene was reduced to a 2.7-kb DNA fragment. A unique protein band (with a molecular weight of approximately 50,000) was observed in recombinant E. coli by minicell analysis.

Full text

PDF
3437

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. APPLEYARD G., WOODS D. D. The pathway of creatine catabolism by Pseudomonas ovalis. J Gen Microbiol. 1956 Apr;14(2):351–365. doi: 10.1099/00221287-14-2-351. [DOI] [PubMed] [Google Scholar]
  2. Beggs J. D. Transformation of yeast by a replicating hybrid plasmid. Nature. 1978 Sep 14;275(5676):104–109. doi: 10.1038/275104a0. [DOI] [PubMed] [Google Scholar]
  3. Hoeffken H. W., Knof S. H., Bartlett P. A., Huber R., Moellering H., Schumacher G. Crystal structure determination, refinement and molecular model of creatine amidinohydrolase from Pseudomonas putida. J Mol Biol. 1988 Nov 20;204(2):417–433. doi: 10.1016/0022-2836(88)90586-4. [DOI] [PubMed] [Google Scholar]
  4. Kaplan A., Naugler D. Creatinine hydrolase and creatine amidinohydrolase. I. Presence in cell-free extractions of Arthrobacter ureafaciens. Mol Cell Biochem. 1974 Mar 8;3(1):9–15. doi: 10.1007/BF01660072. [DOI] [PubMed] [Google Scholar]
  5. Koyama Y., Kitao S., Yamamoto-Otake H., Suzuki M., Nakano E. Cloning and expression of the creatinase gene from Flavobacterium sp. U-188 in Escherichia coli. Agric Biol Chem. 1990 Jun;54(6):1453–1457. [PubMed] [Google Scholar]
  6. Lejeune A., Dartois V., Colson C. Characterization and expression in Escherichia coli of an endoglucanase gene of Pseudomonas fluorescens subsp. cellulosa. Biochim Biophys Acta. 1988 Jul 13;950(2):204–214. doi: 10.1016/0167-4781(88)90012-7. [DOI] [PubMed] [Google Scholar]
  7. Matsuda Y., Wakamatsu N., Inouye Y., Uede S., Hashimoto Y., Asano K., Nakamura S. Purification and characterization of creatine amidinohydrolase of Alcaligenes origin. Chem Pharm Bull (Tokyo) 1986 May;34(5):2155–2160. doi: 10.1248/cpb.34.2155. [DOI] [PubMed] [Google Scholar]
  8. Vieira J., Messing J. The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene. 1982 Oct;19(3):259–268. doi: 10.1016/0378-1119(82)90015-4. [DOI] [PubMed] [Google Scholar]
  9. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES