Abstract
The cell surfaces of several toxigenic and nontoxigenic environmental and clinical isolates of Vibrio cholerae non-O1 have been examined. The environmental strains, irrespective of toxigenicity, are significantly more resistant to antibiotics and detergents than are V. cholerae O1 strains. The clinical isolates of non-O1 vibrios are as sensitive to a wide variety of chemicals as the O1 vibrios. The environmental non-O1 strains are also less susceptible to lysis when treated with protein denaturants or neutral and anionic detergents than are O1 vibrios and the clinical non-O1 strains. In contrast to O1 vibrios, the environmental non-O1 vibrios do not have exposed phospholipids in their outer membranes. These features of the cell surfaces of environmental non-O1 vibrios might have a role in the better survival of these organisms under environmental fluctuations.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- AMES B. N., DUBIN D. T. The role of polyamines in the neutralization of bacteriophage deoxyribonucleic acid. J Biol Chem. 1960 Mar;235:769–775. [PubMed] [Google Scholar]
- Adhikari P. C., Raychaudhuri C., Chatterjee S. N. The lysis of cholera and El Tor Vibrios. J Gen Microbiol. 1969 Nov;59(1):91–95. doi: 10.1099/00221287-59-1-91. [DOI] [PubMed] [Google Scholar]
- Arita M., Takeda T., Honda T., Miwatani T. Purification and characterization of Vibrio cholerae non-O1 heat-stable enterotoxin. Infect Immun. 1986 Apr;52(1):45–49. doi: 10.1128/iai.52.1.45-49.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Banerjee K. K., Ghosh A. N., Dutta-Roy K., Pal S. C., Ghose A. C. Purification and characterization of a novel hemagglutinin from Vibrio cholerae. Infect Immun. 1990 Nov;58(11):3698–3705. doi: 10.1128/iai.58.11.3698-3705.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bhadra R. K., Biswas T., Pal S. C., Takeda T., Nair G. B. A polyclonal-monoclonal antibody based sensitive sandwich enzyme linked immunosorbent assay for specific detection of cholera toxin. Zentralbl Bakteriol. 1991 Oct;275(4):467–473. doi: 10.1016/s0934-8840(11)80167-2. [DOI] [PubMed] [Google Scholar]
- Bhadra R. K., Pal S. C., Nair G. B. Simplified method for the detection of DNA hydrolysis by enteric campylobacters. Indian J Med Res. 1991 Mar;93:87–89. [PubMed] [Google Scholar]
- Cash R. A., Music S. I., Libonati J. P., Schwartz A. R., Hornick R. B. Live oral cholera vaccine: evaluation of the clinical effectiveness of two strains in humans. Infect Immun. 1974 Oct;10(4):762–764. doi: 10.1128/iai.10.4.762-764.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DE S. N., CHATTERJE D. N. An experimental study of the mechanism of action of Vibriod cholerae on the intestinal mucous membrane. J Pathol Bacteriol. 1953 Oct;66(2):559–562. doi: 10.1002/path.1700660228. [DOI] [PubMed] [Google Scholar]
- Datta-Roy K., Dasgupta C., Ghose A. C. Hemagglutination and intestinal adherence properties of clinical and environmental isolates of non-O1 Vibrio cholerae. Appl Environ Microbiol. 1989 Sep;55(9):2403–2406. doi: 10.1128/aem.55.9.2403-2406.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Filip C., Fletcher G., Wulff J. L., Earhart C. F. Solubilization of the cytoplasmic membrane of Escherichia coli by the ionic detergent sodium-lauryl sarcosinate. J Bacteriol. 1973 Sep;115(3):717–722. doi: 10.1128/jb.115.3.717-722.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Islam S. S., Shahid N. S. Morbidity and mortality in a diarrhoeal diseases hospital in Bangladesh. Trans R Soc Trop Med Hyg. 1986;80(5):748–752. doi: 10.1016/0035-9203(86)90374-3. [DOI] [PubMed] [Google Scholar]
- Janda J. M., Powers C., Bryant R. G., Abbott S. L. Current perspectives on the epidemiology and pathogenesis of clinically significant Vibrio spp. Clin Microbiol Rev. 1988 Jul;1(3):245–267. doi: 10.1128/cmr.1.3.245. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kamio Y., Nikaido H. Outer membrane of Salmonella typhimurium: accessibility of phospholipid head groups to phospholipase c and cyanogen bromide activated dextran in the external medium. Biochemistry. 1976 Jun 15;15(12):2561–2570. doi: 10.1021/bi00657a012. [DOI] [PubMed] [Google Scholar]
- Labischinski H., Goodell E. W., Goodell A., Hochberg M. L. Direct proof of a "more-than-single-layered" peptidoglycan architecture of Escherichia coli W7: a neutron small-angle scattering study. J Bacteriol. 1991 Jan;173(2):751–756. doi: 10.1128/jb.173.2.751-756.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lohia A., Chatterjee A. N., Das J. Lysis of Vibrio cholerae cells: direct isolation of the outer membrane from whole cells by treatment with urea. J Gen Microbiol. 1984 Aug;130(8):2027–2033. doi: 10.1099/00221287-130-8-2027. [DOI] [PubMed] [Google Scholar]
- Lohia A., Majumdar S., Chatterjee A. N., Das J. Effect of changes in the osmolarity of the growth medium on Vibrio cholerae cells. J Bacteriol. 1985 Sep;163(3):1158–1166. doi: 10.1128/jb.163.3.1158-1166.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Markwell M. A., Haas S. M., Bieber L. L., Tolbert N. E. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem. 1978 Jun 15;87(1):206–210. doi: 10.1016/0003-2697(78)90586-9. [DOI] [PubMed] [Google Scholar]
- Neu H. C., Heppel L. A. The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts. J Biol Chem. 1965 Sep;240(9):3685–3692. [PubMed] [Google Scholar]
- Nikaido H., Vaara M. Molecular basis of bacterial outer membrane permeability. Microbiol Rev. 1985 Mar;49(1):1–32. doi: 10.1128/mr.49.1.1-32.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nishibuchi M., Seidler R. J. Medium-dependent production of extracellular enterotoxins by non-O-1 Vibrio cholerae, Vibrio mimicus, and Vibrio fluvialis. Appl Environ Microbiol. 1983 Jan;45(1):228–231. doi: 10.1128/aem.45.1.228-231.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Brien A. D., Chen M. E., Holmes R. K., Kaper J., Levine M. M. Environmental and human isolates of Vibrio cholerae and Vibrio parahaemolyticus produce a Shigella dysenteriae 1 (Shiga)-like cytotoxin. Lancet. 1984 Jan 14;1(8368):77–78. doi: 10.1016/s0140-6736(84)90006-0. [DOI] [PubMed] [Google Scholar]
- Ogawa A., Kato J., Watanabe H., Nair B. G., Takeda T. Cloning and nucleotide sequence of a heat-stable enterotoxin gene from Vibrio cholerae non-O1 isolated from a patient with traveler's diarrhea. Infect Immun. 1990 Oct;58(10):3325–3329. doi: 10.1128/iai.58.10.3325-3329.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Osborn M. J., Gander J. E., Parisi E., Carson J. Mechanism of assembly of the outer membrane of Salmonella typhimurium. Isolation and characterization of cytoplasmic and outer membrane. J Biol Chem. 1972 Jun 25;247(12):3962–3972. [PubMed] [Google Scholar]
- Paul S., Chaudhuri K., Chatterjee A. N., Das J. Presence of exposed phospholipids in the outer membrane of Vibrio cholerae. J Gen Microbiol. 1992 Apr;138(4):755–761. doi: 10.1099/00221287-138-4-755. [DOI] [PubMed] [Google Scholar]
- Paul S., Sen A. K., Banerjee N., Chatterjee A. N., Das J. Lipid A mutants of Vibrio cholerae: isolation and partial characterization. Biochem Biophys Res Commun. 1990 May 31;169(1):116–122. doi: 10.1016/0006-291x(90)91441-t. [DOI] [PubMed] [Google Scholar]
- Ray P., Sengupta A., Das J. Phosphate repression of phage protein synthesis during infection by choleraphage phi 149. Virology. 1984 Jul 15;136(1):110–124. doi: 10.1016/0042-6822(84)90252-6. [DOI] [PubMed] [Google Scholar]
- Roy N. K., Ghosh R. K., Das J. Repression of the alkaline phosphatase of Vibrio cholerae. J Gen Microbiol. 1982 Feb;128(2):349–353. doi: 10.1099/00221287-128-2-349. [DOI] [PubMed] [Google Scholar]
- Sengupta T. K., Chatterjee A. N., Das J. Penicillin binding proteins of Vibrio cholerae. Biochem Biophys Res Commun. 1990 Sep 28;171(3):1175–1181. doi: 10.1016/0006-291x(90)90808-z. [DOI] [PubMed] [Google Scholar]
- Sengupta T. K., Chaudhuri K., Majumdar S., Lohia A., Chatterjee A. N., Das J. Interaction of Vibrio cholerae cells with beta-lactam antibiotics: emergence of resistant cells at a high frequency. Antimicrob Agents Chemother. 1992 Apr;36(4):788–795. doi: 10.1128/aac.36.4.788. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sukupolvi S., Vaara M. Salmonella typhimurium and Escherichia coli mutants with increased outer membrane permeability to hydrophobic compounds. Biochim Biophys Acta. 1989 Dec 6;988(3):377–387. doi: 10.1016/0304-4157(89)90011-7. [DOI] [PubMed] [Google Scholar]
- Venkateswaran K., Takai T., Navarro I. M., Nakano H., Hashimoto H., Siebeling R. J. Ecology of Vibrio cholerae non-O1 and Salmonella spp. and role of zooplankton in their seasonal distribution in Fukuyama coastal waters, Japan. Appl Environ Microbiol. 1989 Jun;55(6):1591–1598. doi: 10.1128/aem.55.6.1591-1598.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wright B. G., Rebers P. A. Procedure for determining heptose and hexose in lipopolysaccharides. Modification of the cysteine-sulfuric acid method. Anal Biochem. 1972 Oct;49(2):307–319. doi: 10.1016/0003-2697(72)90433-2. [DOI] [PubMed] [Google Scholar]
- Yamamoto K., Takeda Y., Miwatani T., Craig J. P. Purification and some properties of a non-o1 Vibrio cholerae enterotoxin that is identical to cholera enterotoxin. Infect Immun. 1983 Mar;39(3):1128–1135. doi: 10.1128/iai.39.3.1128-1135.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoh M., Honda T., Miwatani T. Purification and partial characterization of a non-O1 Vibrio cholerae hemolysin that cross-reacts with thermostable direct hemolysin of Vibrio parahaemolyticus. Infect Immun. 1986 Apr;52(1):319–322. doi: 10.1128/iai.52.1.319-322.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]