Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1992 Nov;58(11):3779–3783. doi: 10.1128/aem.58.11.3779-3783.1992

Alteration of specific activity and stability of thermostable neutral protease by site-directed mutagenesis.

M Kubo 1, Y Mitsuda 1, M Takagi 1, T Imanaka 1
PMCID: PMC183176  PMID: 1482198

Abstract

On the basis of three-dimensional information, many amino acid substitutions were introduced in the thermostable neutral protease (NprM) of Bacillus stearothermophilus MK232 by site-directed mutagenesis. When Glu at position 143 (Glu-143), which is one of the proposed active sites, was substituted for by Gln and Asp, the proteolytic activity disappeared. F114A (Phe-114 to Ala), Y110W (Tyr-110 to Trp), and Y211W (Tyr-211 to Trp) mutant enzymes had higher activity (1.3- to 1.6-fold) than the wild-type enzyme. When an autolysis site, Tyr-93, was replaced by Gly and Ser, the remaining activities of those mutant enzymes were higher than that of the wild-type enzyme.

Full text

PDF
3779

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anagnostopoulos C., Spizizen J. REQUIREMENTS FOR TRANSFORMATION IN BACILLUS SUBTILIS. J Bacteriol. 1961 May;81(5):741–746. doi: 10.1128/jb.81.5.741-746.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blumberg S., Vallee B. L. Superactivation of thermolysin by acylation with amino acid N-hydroxysuccinimide esters. Biochemistry. 1975 Jun 3;14(11):2410–2419. doi: 10.1021/bi00682a022. [DOI] [PubMed] [Google Scholar]
  3. Fontana A., Fassina G., Vita C., Dalzoppo D., Zamai M., Zambonin M. Correlation between sites of limited proteolysis and segmental mobility in thermolysin. Biochemistry. 1986 Apr 22;25(8):1847–1851. doi: 10.1021/bi00356a001. [DOI] [PubMed] [Google Scholar]
  4. Fujii M., Takagi M., Imanaka T., Aiba S. Molecular cloning of a thermostable neutral protease gene from Bacillus stearothermophilus in a vector plasmid and its expression in Bacillus stearothermophilus and Bacillus subtilis. J Bacteriol. 1983 May;154(2):831–837. doi: 10.1128/jb.154.2.831-837.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fujishima A., Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972 Jul 7;238(5358):37–38. doi: 10.1038/238037a0. [DOI] [PubMed] [Google Scholar]
  6. Imanaka T. Enhancement of thermostability of neutral proteases. Ann N Y Acad Sci. 1990;613:347–351. doi: 10.1111/j.1749-6632.1990.tb18176.x. [DOI] [PubMed] [Google Scholar]
  7. Kester W. R., Matthews B. W. Crystallographic study of the binding of dipeptide inhibitors to thermolysin: implications for the mechanism of catalysis. Biochemistry. 1977 May 31;16(11):2506–2516. doi: 10.1021/bi00630a030. [DOI] [PubMed] [Google Scholar]
  8. Kubo M., Imanaka T. Cloning and nucleotide sequence of the highly thermostable neutral protease gene from Bacillus stearothermophilus. J Gen Microbiol. 1988 Jul;134(7):1883–1892. doi: 10.1099/00221287-134-7-1883. [DOI] [PubMed] [Google Scholar]
  9. Mazur R. H., Schlatter J. M., Goldkamp A. H. Structure-taste relationships of some dipeptides. J Am Chem Soc. 1969 May 7;91(10):2684–2691. doi: 10.1021/ja01038a046. [DOI] [PubMed] [Google Scholar]
  10. Messing J. New M13 vectors for cloning. Methods Enzymol. 1983;101:20–78. doi: 10.1016/0076-6879(83)01005-8. [DOI] [PubMed] [Google Scholar]
  11. Sanger F., Coulson A. R. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol. 1975 May 25;94(3):441–448. doi: 10.1016/0022-2836(75)90213-2. [DOI] [PubMed] [Google Scholar]
  12. Takagi M., Imanaka T., Aiba S. Nucleotide sequence and promoter region for the neutral protease gene from Bacillus stearothermophilus. J Bacteriol. 1985 Sep;163(3):824–831. doi: 10.1128/jb.163.3.824-831.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Vieira J., Messing J. Production of single-stranded plasmid DNA. Methods Enzymol. 1987;153:3–11. doi: 10.1016/0076-6879(87)53044-0. [DOI] [PubMed] [Google Scholar]
  14. Yamada M., Kubo M., Miyake T., Sakaguchi R., Higo Y., Imanaka T. Promoter sequence analysis in Bacillus and Escherichia: construction of strong promoters in E. coli. Gene. 1991 Mar 1;99(1):109–114. doi: 10.1016/0378-1119(91)90041-9. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES