Abstract
A study was made of the mechanisms by which visible light produces cell dormancy in Escherichia coli, resulting in loss of culturability. Visible light may act directly on the cells or generate photoproducts with a negative effect on the cells. In nonilluminated microcosms the addition of increasing concentrations of hydrogen peroxide, one of the photoproducts formed in natural aquatic systems, gave rise to the formation of nonculturable cells and injured culturable cells, and this negative effect depended on the concentration of peroxide. On the other hand, in illuminated microcosms the addition of compounds which eliminate hydrogen peroxide (i.e., catalase, sodium pyruvate, and thioglycolate) had a protective effect on the E. coli cells, as the CFU counts on minimal medium and on recuperation medium were significantly higher (P < 0.05) than those detected in the absence of these compounds. Furthermore, when hydrogen peroxide was eliminated, the CFU counts on recuperation medium did not fall significantly, indicating that nonculturable cells did not form. These results rule out the direct effect of visible light on the cells and show that hydrogen peroxide, generated photochemically, may be the cause of the loss of culturability of E. coli in illuminated systems.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alexander M. Why microbial predators and parasites do not eliminate their prey and hosts. Annu Rev Microbiol. 1981;35:113–133. doi: 10.1146/annurev.mi.35.100181.000553. [DOI] [PubMed] [Google Scholar]
- Barcina I., Arana I., Fernandez-Astorga A., Iriberri J., Egea L. Survival strategies of plasmid-carrier and plasmidless Escherichia coli strains under illuminated and non-illuminated conditions, in a fresh water ecosystem. J Appl Bacteriol. 1992 Sep;73(3):229–236. doi: 10.1111/j.1365-2672.1992.tb02982.x. [DOI] [PubMed] [Google Scholar]
- Barcina I., Arana I., Iriberri J., Egea L. Influence of light and natural microbiota of the Butrón river on E. coli survival. Antonie Van Leeuwenhoek. 1986;52(6):555–566. doi: 10.1007/BF00423416. [DOI] [PubMed] [Google Scholar]
- Barcina I., González J. M., Iriberri J., Egea L. Effect of visible light on progressive dormancy of Escherichia coli cells during the survival process in natural fresh water. Appl Environ Microbiol. 1989 Jan;55(1):246–251. doi: 10.1128/aem.55.1.246-251.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barcina I., González J. M., Iriberri J., Egea L. Survival strategy of Escherichia coli and Enterococcus faecalis in illuminated fresh and marine systems. J Appl Bacteriol. 1990 Feb;68(2):189–198. doi: 10.1111/j.1365-2672.1990.tb02565.x. [DOI] [PubMed] [Google Scholar]
- Cooper W. J., Zika R. G. Photochemical formation of hydrogen peroxide in surface and ground waters exposed to sunlight. Science. 1983 May 13;220(4598):711–712. doi: 10.1126/science.220.4598.711. [DOI] [PubMed] [Google Scholar]
- Curtis T. P., Mara D. D., Silva S. A. Influence of pH, Oxygen, and Humic Substances on Ability of Sunlight To Damage Fecal Coliforms in Waste Stabilization Pond Water. Appl Environ Microbiol. 1992 Apr;58(4):1335–1343. doi: 10.1128/aem.58.4.1335-1343.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davies C. M., Evison L. M. Sunlight and the survival of enteric bacteria in natural waters. J Appl Bacteriol. 1991 Mar;70(3):265–274. doi: 10.1111/j.1365-2672.1991.tb02935.x. [DOI] [PubMed] [Google Scholar]
- Flint K. P. The long-term survival of Escherichia coli in river water. J Appl Bacteriol. 1987 Sep;63(3):261–270. doi: 10.1111/j.1365-2672.1987.tb04945.x. [DOI] [PubMed] [Google Scholar]
- Fujioka R. S., Hashimoto H. H., Siwak E. B., Young R. H. Effect of sunlight on survival of indicator bacteria in seawater. Appl Environ Microbiol. 1981 Mar;41(3):690–696. doi: 10.1128/aem.41.3.690-696.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- González J. M., Iriberri J., Egea L., Barcina I. Characterization of culturability, protistan grazing, and death of enteric bacteria in aquatic ecosystems. Appl Environ Microbiol. 1992 Mar;58(3):998–1004. doi: 10.1128/aem.58.3.998-1004.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- González J. M., Iriberri J., Egea L., Barcina I. Differential rates of digestion of bacteria by freshwater and marine phagotrophic protozoa. Appl Environ Microbiol. 1990 Jun;56(6):1851–1857. doi: 10.1128/aem.56.6.1851-1857.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grimes D. J., Atwell R. W., Brayton P. R., Palmer L. M., Rollins D. M., Roszak D. B., Singleton F. L., Tamplin M. L., Colwell R. R. The fate of enteric pathogenic bacteria in estuarine and marine environments. Microbiol Sci. 1986 Nov;3(11):324–329. [PubMed] [Google Scholar]
- Guerrero R., Pedros-Alio C., Esteve I., Mas J., Chase D., Margulis L. Predatory prokaryotes: predation and primary consumption evolved in bacteria. Proc Natl Acad Sci U S A. 1986 Apr;83(7):2138–2142. doi: 10.1073/pnas.83.7.2138. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hagström A., Larsson U., Hörstedt P., Normark S. Frequency of dividing cells, a new approach to the determination of bacterial growth rates in aquatic environments. Appl Environ Microbiol. 1979 May;37(5):805–812. doi: 10.1128/aem.37.5.805-812.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henis Y., Alexander M. Effect of organic amendments on bacterial multiplication in lake water. Antonie Van Leeuwenhoek. 1990 Jan;57(1):9–20. doi: 10.1007/BF00400330. [DOI] [PubMed] [Google Scholar]
- Jannasch H. W. Competitive elimination of Enterobacteriaceae from seawater. Appl Microbiol. 1968 Oct;16(10):1616–1618. doi: 10.1128/am.16.10.1616-1618.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kapuscinski R. B., Mitchell R. Solar radiation induces sublethal injury in Escherichia coli in seawater. Appl Environ Microbiol. 1981 Mar;41(3):670–674. doi: 10.1128/aem.41.3.670-674.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mallory L. M., Yuk C. S., Liang L. N., Alexander M. Alternative prey: a mechanism for elimination of bacterial species by protozoa. Appl Environ Microbiol. 1983 Nov;46(5):1073–1079. doi: 10.1128/aem.46.5.1073-1079.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McFeters G. A., Singh A. Effects of aquatic environmental stress on enteric bacterial pathogens. Soc Appl Bacteriol Symp Ser. 1991;20:115S–120S. [PubMed] [Google Scholar]
- Sammartano L. J., Tuveson R. W., Davenport R. Control of sensitivity to inactivation by H2O2 and broad-spectrum near-UV radiation by the Escherichia coli katF locus. J Bacteriol. 1986 Oct;168(1):13–21. doi: 10.1128/jb.168.1.13-21.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Singh A., McFeters G. A. Survival and virulence of copper- and chlorine-stressed Yersinia enterocolitica in experimentally infected mice. Appl Environ Microbiol. 1987 Aug;53(8):1768–1774. doi: 10.1128/aem.53.8.1768-1774.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Singh A., Yeager R., McFeters G. A. Assessment of in vivo revival, growth, and pathogenicity of Escherichia coli strains after copper- and chlorine-induced injury. Appl Environ Microbiol. 1986 Oct;52(4):832–837. doi: 10.1128/aem.52.4.832-837.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]