Abstract
A marine bacterial strain isolated from the Bay of San Vicente, Chile, was identified as Alteromonas sp. strain C-1. In the presence of agar, this strain produced high levels of an extracellular agarase. The production of agarase was repressed by glucose, with a parallel decrease in bacterial growth. The enzyme was purified to homogeneity by anion-exchange chromatography and gel filtration, with an overall yield of 45%. The enzyme has a molecular weight of 52,000, is salt sensitive, and hydrolyzes agar, yielding neoagarotetraose as the main product, with an optimum pH of about 6.5.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aoki T., Araki T., Kitamikado M. Purification and characterization of a novel beta-agarase from Vibrio sp. AP-2. Eur J Biochem. 1990 Jan 26;187(2):461–465. doi: 10.1111/j.1432-1033.1990.tb15326.x. [DOI] [PubMed] [Google Scholar]
- Belas R. Sequence analysis of the agrA gene encoding beta-agarase from Pseudomonas atlantica. J Bacteriol. 1989 Jan;171(1):602–605. doi: 10.1128/jb.171.1.602-605.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bibb M. J., Jones G. H., Joseph R., Buttner M. J., Ward J. M. The agarase gene (dag A) of Streptomyces coelicolor A3(2): affinity purification and characterization of the cloned gene product. J Gen Microbiol. 1987 Aug;133(8):2089–2096. doi: 10.1099/00221287-133-8-2089. [DOI] [PubMed] [Google Scholar]
- Dygert S., Li L. H., Florida D., Thoma J. A. Determination of reducing sugar with improved precision. Anal Biochem. 1965 Dec;13(3):367–374. doi: 10.1016/0003-2697(65)90327-1. [DOI] [PubMed] [Google Scholar]
- Groleau D., Yaphe W. Enzymatic hydrolysis of agar: purification and characterization of beta-neoagarotetraose hydrolase from Pseudomonas atlantica. Can J Microbiol. 1977 Jun;23(6):672–679. doi: 10.1139/m77-100. [DOI] [PubMed] [Google Scholar]
- Kumura K., Minamishima Y., Yamamoto S., Ohashi N., Tamura A. DNA base composition of Rickettsia tsutsugamushi determined by reversed-phase high-performance liquid chromatography. Int J Syst Bacteriol. 1991 Apr;41(2):247–248. doi: 10.1099/00207713-41-2-247. [DOI] [PubMed] [Google Scholar]
- LEIFSON E. DETERMINATION OF CARBOHYDRATE METABOLISM OF MARINE BACTERIA. J Bacteriol. 1963 May;85:1183–1184. doi: 10.1128/jb.85.5.1183-1184.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Morrice L. M., McLean M. W., Williamson F. B., Long W. F. beta-agarases I and II from Pseudomonas atlantica. Purifications and some properties. Eur J Biochem. 1983 Oct 3;135(3):553–558. doi: 10.1111/j.1432-1033.1983.tb07688.x. [DOI] [PubMed] [Google Scholar]
- Rees D. A. Structure, conformation, and mechanism in the formation of polysaccharide gels and networks. Adv Carbohydr Chem Biochem. 1969;24:267–332. doi: 10.1016/s0065-2318(08)60352-2. [DOI] [PubMed] [Google Scholar]
- Sampietro A. R., Vattuone de Sampietro M. A. Characterization of the agarolytic system of Agarbacterium pastinator. Biochim Biophys Acta. 1971 Jul 20;244(1):65–76. doi: 10.1016/0304-4165(71)90121-8. [DOI] [PubMed] [Google Scholar]
- Stanier R. Y. Agar-Decomposing Strains of the Actinomyces Coelicolor Species-Group. J Bacteriol. 1942 Nov;44(5):555–570. doi: 10.1128/jb.44.5.555-570.1942. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van der Meulen H. J., Harder W., Veldkamp H. Isolation and characterization of Cytophaga flevensis sp. nov., a new agarolytic flexibacterium. Antonie Van Leeuwenhoek. 1974;40(3):329–346. doi: 10.1007/BF00399345. [DOI] [PubMed] [Google Scholar]
- von Hofsten B., Malmqvist M. Degradation of agar by a gram-negative bacterium. J Gen Microbiol. 1975 Mar;87(1):150–158. doi: 10.1099/00221287-87-1-150. [DOI] [PubMed] [Google Scholar]