Abstract
Cell suspensions of Methylosinus trichosporium oxidized the aromatic alcohols benzyl alcohol, vanillyl alcohol, and veratryl alcohol to the corresponding aldehydes, and with the exception of vanillyl alcohol, the aldehydes were further oxidized to the corresponding aromatic acids. No other transformation was observed, and the methoxyl moieties attached to the aromatic nucleus remained intact. More than 70% of the alcohol oxidized could be accounted for by aldehyde and/or acid. Investigation of the inhibitor kinetics of EDTA or p-nitrophenylhydrazine (specific for NAD+-independent methanol dehydrogenase in methylotrophs) on aromatic alcohol oxidation revealed noncompetitive inhibition in which the Vmax was decreased but the Km remained unchanged. The pattern of inhibition of aromatic alcohol oxidation matched that of methanol oxidation, and the Km values for all of the substrates were similar (12 to 16 mM). The results indicate that the initial step in the oxidation of aromatic alcohols was similar to that for methanol, and because oxidation was incomplete (i.e., only the corresponding aldehyde or acid was produced), there may be some biotechnological advantages in using whole cells of methylotrophs to facilitate aromatic biotransformations.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anthony C. Bacterial oxidation of methane and methanol. Adv Microb Physiol. 1986;27:113–210. doi: 10.1016/s0065-2911(08)60305-7. [DOI] [PubMed] [Google Scholar]
- Anthony C., Zatman L. J. The microbial oxidation of methanol. 1. Isolation and properties of Pseudomonas sp. M27. Biochem J. 1964 Sep;92(3):609–614. doi: 10.1042/bj0920609. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anthony C., Zatman L. J. The microbial oxidation of methanol. 2. The methanol-oxidizing enzyme of Pseudomonas sp. M 27. Biochem J. 1964 Sep;92(3):614–621. doi: 10.1042/bj0920614. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anthony C., Zatman L. J. The microbial oxidation of methanol. The alcohol dehydrogenase of Pseudomonas sp. M27. Biochem J. 1965 Sep;96(3):808–812. doi: 10.1042/bj0960808. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Balch W. E., Wolfe R. S. New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressureized atmosphere. Appl Environ Microbiol. 1976 Dec;32(6):781–791. doi: 10.1128/aem.32.6.781-791.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carver M. A., Humphrey K. M., Patchett R. A., Jones C. W. The effect of EDTA and related chelating agents on the oxidation of methanol by the methylotrophic bacterium, Methylophilus methylotrophus. Eur J Biochem. 1984 Feb 1;138(3):611–615. doi: 10.1111/j.1432-1033.1984.tb07958.x. [DOI] [PubMed] [Google Scholar]
- HARRINGTON A. A., KALLIO R. E. Oxidation of methanol and formaldehyde by pseudomonas methanica. Can J Microbiol. 1960 Feb;6:1–7. doi: 10.1139/m60-001. [DOI] [PubMed] [Google Scholar]
- Higgins I. J., Best D. J., Hammond R. C. New findings in methane-utilizing bacteria highlight their importance in the biosphere and their commercial potential. Nature. 1980 Aug 7;286(5773):561–564. doi: 10.1038/286561a0. [DOI] [PubMed] [Google Scholar]
- Higgins I. J., Hammond R. C., Sariaslani F. S., Best D., Davies M. M., Tryhorn S. E., Taylor F. Biotransformation of hydrocarbons and related compounds by whole organism suspensions of methane-grown methylosinus trichosporium OB 3b. Biochem Biophys Res Commun. 1979 Jul 27;89(2):671–677. doi: 10.1016/0006-291x(79)90682-x. [DOI] [PubMed] [Google Scholar]
- Tien M., Kirk T. K. Lignin-degrading enzyme from Phanerochaete chrysosporium: Purification, characterization, and catalytic properties of a unique H(2)O(2)-requiring oxygenase. Proc Natl Acad Sci U S A. 1984 Apr;81(8):2280–2284. doi: 10.1073/pnas.81.8.2280. [DOI] [PMC free article] [PubMed] [Google Scholar]
