Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1990 Jan;56(1):288–291. doi: 10.1128/aem.56.1.288-291.1990

Initial Test of the Benchmark Chemical Approach for Predicting Microbial Transformation Rates in Aquatic Environments

Thomas D Newton 1, David K Gattie 1, David L Lewis 1,*
PMCID: PMC183322  PMID: 16348102

Abstract

Using 2,4-dichlorophenoxyacetic acid methyl ester (2,4-DME) as a benchmark chemical, we determined relative pseudo-first-order rate coefficients for the butoxyethyl ester of 2,4-dichlorophenoxyacetic acid (2,4-DBE), methyl parathion, and methyl-3-chlorobenzoate in a diversity of microbial samples, including water, sediment, biofilm, and floating microbial mats collected from a laboratory mesocosm as well as from streams, lakes, and wetlands in Georgia and Florida. The decreasing order of reactivity for relative microbial transformation rates was 2,4-DBE > 2,4-DME > methyl-3-chlorobenzoate > methyl parathion. Half-lives of the chemicals varied about 60-fold depending on the chemical and microbial sample. Relative rate coefficients, however, typically varied only about threefold for field-collected samples. Relative rate coefficients determined with samples from a laboratory mesocosm were consistently low compared with the field sample data. Overall, the data indicated that microbial transformation rates of a chemical can be satisfactorily inferred for a wide variety of microbial habitats—such as water, biofilm, or a sediment—on the basis of its transformation rate relative to that of an appropriate benchmark chemical by using a single type of microbial sample.

Full text

PDF
288

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Lewis D. L., Gattie D. K. Prediction of substrate removal rates of attached microorganisms and of relative contributions of attached and suspended communities at field sites. Appl Environ Microbiol. 1988 Feb;54(2):434–440. doi: 10.1128/aem.54.2.434-440.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Lewis D. L., Holm H. W. Rates of transformation of methyl parathion and diethyl phthalate by aufwuchs microorganisms. Appl Environ Microbiol. 1981 Oct;42(4):698–703. doi: 10.1128/aem.42.4.698-703.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Lewis D. L., Kollig H. P., Hall T. L. Predicting 2,4-dichlorophenoxyacetic Acid ester transformation rates in periphyton-dominated ecosystems. Appl Environ Microbiol. 1983 Jul;46(1):146–151. doi: 10.1128/aem.46.1.146-151.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Paris D. F., Rogers J. E. Kinetic concepts for measuring microbial rate constants: effects of nutrients on rate constants. Appl Environ Microbiol. 1986 Feb;51(2):221–225. doi: 10.1128/aem.51.2.221-225.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Paris D. F., Wolfe N. L., Steen W. C. Microbial transformation of esters of chlorinated carboxylic acids. Appl Environ Microbiol. 1984 Jan;47(1):7–11. doi: 10.1128/aem.47.1.7-11.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES