Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1990 Jan;56(1):298–300. doi: 10.1128/aem.56.1.298-300.1990

Carbon Flow in Mercury Biomethylation by Desulfovibrio desulfuricans

Mitchell Berman 1, Theodore Chase Jr 1, Richard Bartha 1,*
PMCID: PMC183328  PMID: 16348104

Abstract

Radiocarbon incorporation from pyruvate and serine into monomethylmercury by Desulfovibrio desulfuricans was consistent with the proposal that the methyl group originates from C-3 of serine. Immunodiagnostic assays measured 4 to 35 μg of tetrahydrofolate and 58 to 161 ng of cobalamin or a closely related cobalt porphyrin per g of cell protein in D. desulfuricans. The light-reversible inhibition of mercury methylation by propyl iodide in D. desulfuricans indicates methyl transfer by a cobalt porphyrin.

Full text

PDF
298

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BROT N., WEISSBACH H. ENZYMATIC SYNTHESIS OF METHIONINE. CHEMICAL ALKYLATION OF THE ENZYME-BOUND COBAMIDE. J Biol Chem. 1965 Jul;240:3064–3070. [PubMed] [Google Scholar]
  2. Berman M., Bartha R. Levels of chemical versus biological methylation of mercury in sediments. Bull Environ Contam Toxicol. 1986 Mar;36(3):401–404. doi: 10.1007/BF01623527. [DOI] [PubMed] [Google Scholar]
  3. Compeau G. C., Bartha R. Effect of salinity on mercury-methylating activity of sulfate-reducing bacteria in estuarine sediments. Appl Environ Microbiol. 1987 Feb;53(2):261–265. doi: 10.1128/aem.53.2.261-265.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Compeau G. C., Bartha R. Sulfate-reducing bacteria: principal methylators of mercury in anoxic estuarine sediment. Appl Environ Microbiol. 1985 Aug;50(2):498–502. doi: 10.1128/aem.50.2.498-502.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  6. Landner L. Biochemical model for the biological methylation of mercury suggested from methylation studies in vivo with Neurospora crassa. Nature. 1971 Apr 16;230(5294):452–454. doi: 10.1038/230452a0. [DOI] [PubMed] [Google Scholar]
  7. Pan-Hou H. S., Imura N. Involvement of mercury methylation in microbial mercury detoxication. Arch Microbiol. 1982 Mar;131(2):176–177. doi: 10.1007/BF01054003. [DOI] [PubMed] [Google Scholar]
  8. Postgate J. R. Methane as a minor product of pyruvate metabolism by sulphate-reducing and other bacteria. J Gen Microbiol. 1969 Aug;57(3):293–302. doi: 10.1099/00221287-57-3-293. [DOI] [PubMed] [Google Scholar]
  9. Robinson J. B., Tuovinen O. H. Mechanisms of microbial resistance and detoxification of mercury and organomercury compounds: physiological, biochemical, and genetic analyses. Microbiol Rev. 1984 Jun;48(2):95–124. doi: 10.1128/mr.48.2.95-124.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. WEISSBACH H., REDFIELD B. G., DICKERMAN H., BROT N. STUDIES ON METHIONINE BIOSYNTHESIS. EFFECT OF ALKYLCOBAMIDE DERIVATIVES ON THE FORMATION OF HOLOENZYME. J Biol Chem. 1965 Feb;240:856–862. [PubMed] [Google Scholar]
  11. Wood J. M., Kennedy F. S., Rosen C. G. Synthesis of methyl-mercury compounds by extracts of a methanogenic bacterium. Nature. 1968 Oct 12;220(5163):173–174. doi: 10.1038/220173a0. [DOI] [PubMed] [Google Scholar]
  12. Wood J. M., Wolfe R. S. Propylation and purification of a B12 enzyme involved in methane formation. Biochemistry. 1966 Nov;5(11):3598–3603. doi: 10.1021/bi00875a031. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES