Abstract
Several bacterial cultures were isolated that are able to degrade quinoline and to transform or to degrade methylquinolines. The degradation of quinoline by strains of Pseudomonas aeruginosa QP and P. putida QP produced hydroxyquinolines, a transient pink compound, and other undetermined products. The quinoline-degrading strains of P. aeruginosa QP and P. putida QP hydroxylated a limited number of methylquinolines but could not degrade them, nor could they transform 2-methylquinoline, isoquinoline, or pyridine. Another pseudomonad, Pseudomonas sp. strain MQP, was isolated that could degrade 2-methylquinoline. P. aeruginosa QP was able to degrade or to transform quinoline and a few methylquinolines in a complex heterocyclic nitrogen-containing fraction of a shale oil. All of the quinoline- and methylquinoline-degrading strains have multiple plasmids including a common 250-kilobase plasmid. The 225-, 250-, and 320-kilobase plasmids of the P. aeruginosa QP strain all contained genes involved in quinoline metabolism.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Berry D. F., Madsen E. L., Bollag J. M. Conversion of indole to oxindole under methanogenic conditions. Appl Environ Microbiol. 1987 Jan;53(1):180–182. doi: 10.1128/aem.53.1.180-182.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brockman F. J., Denovan B. A., Hicks R. J., Fredrickson J. K. Isolation and characterization of quinoline-degrading bacteria from subsurface sediments. Appl Environ Microbiol. 1989 Apr;55(4):1029–1032. doi: 10.1128/aem.55.4.1029-1032.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eckhardt T. A rapid method for the identification of plasmid desoxyribonucleic acid in bacteria. Plasmid. 1978 Sep;1(4):584–588. doi: 10.1016/0147-619x(78)90016-1. [DOI] [PubMed] [Google Scholar]
- Goswami U. C., Barua A. B. Intestinal conversion of lutein into 3-dehydroretinol in freshwater fish, Heteropneustes fossilis & Channa straitus. Indian J Biochem Biophys. 1981 Feb;18(1):88–88. [PubMed] [Google Scholar]
- Grant D. J., Al-Najjar T. R. Degradation of quinoline by a soil bacterium. Microbios. 1976;15(61-62):177–189. [PubMed] [Google Scholar]
- Kucher R. V., Turovskii A. A., Dzumedzei N. V., Shevchenko A. G. Mikrobiologicheskaia transformatsiia khinolina bakteriiami Pseudomonas putida. Mikrobiol Zh. 1980 May-Jun;42(3):284–287. [PubMed] [Google Scholar]
- McHugh G. L., Swartz M. N. Elimination of plasmids from several bacterial species by novobiocin. Antimicrob Agents Chemother. 1977 Sep;12(3):423–426. doi: 10.1128/aac.12.3.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pereira W. E., Rostad C. E., Leiker T. J., Updegraff D. M., Bennett J. L. Microbial hydroxylation of quinoline in contaminated groundwater: evidence for incorporation of the oxygen atom of water. Appl Environ Microbiol. 1988 Mar;54(3):827–829. doi: 10.1128/aem.54.3.827-829.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shukla O. P. Microbial transformation of quinoline by a Pseudomonas sp. Appl Environ Microbiol. 1986 Jun;51(6):1332–1342. doi: 10.1128/aem.51.6.1332-1342.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tomoeda M., Inuzuka M., Kubo N., Nakamura S. Effective elimination of drug resistance and sex factors in Escherichia coli by sodium dodecyl sulfate. J Bacteriol. 1968 Mar;95(3):1078–1089. doi: 10.1128/jb.95.3.1078-1089.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang Y. T., Suidan M. T., Pfeffer J. T. Anaerobic biodegradation of indole to methane. Appl Environ Microbiol. 1984 Nov;48(5):1058–1060. doi: 10.1128/aem.48.5.1058-1060.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]

