Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1990 Feb;56(2):463–465. doi: 10.1128/aem.56.2.463-465.1990

Effects of environmental conditions on xylose fermentation by recombinant Escherichia coli.

K Ohta 1, F Alterthum 1, L O Ingram 1
PMCID: PMC183361  PMID: 2407186

Abstract

In batch fermentations, optimal conversion of xylose to ethanol by recombinant Escherichia coli was obtained under the following conditions: 30 to 37 degrees C, pH 6.4 to 6.8, 0.1 to 0.2 M potassium phosphate buffer, and xylose concentrations of 8% or less. A yield of 39.2 g of ethanol per liter (4.9% ethanol by volume) was observed with 80 g of xylose per liter, equivalent to 96% of the maximum theoretical yield. Maximal volumetric productivity was 0.7 g of ethanol per liter per h in batch fermentations and 30 g of ethanol per liter per h in concentrated cell suspensions (analogous to cell recycling).

Full text

PDF
463

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alterthum F., Ingram L. O. Efficient ethanol production from glucose, lactose, and xylose by recombinant Escherichia coli. Appl Environ Microbiol. 1989 Aug;55(8):1943–1948. doi: 10.1128/aem.55.8.1943-1948.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Dombek K. M., Ingram L. O. Determination of the intracellular concentration of ethanol in Saccharomyces cerevisiae during fermentation. Appl Environ Microbiol. 1986 Jan;51(1):197–200. doi: 10.1128/aem.51.1.197-200.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dombek K. M., Ingram L. O. Magnesium limitation and its role in apparent toxicity of ethanol during yeast fermentation. Appl Environ Microbiol. 1986 Nov;52(5):975–981. doi: 10.1128/aem.52.5.975-981.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ingram L. O., Conway T., Clark D. P., Sewell G. W., Preston J. F. Genetic engineering of ethanol production in Escherichia coli. Appl Environ Microbiol. 1987 Oct;53(10):2420–2425. doi: 10.1128/aem.53.10.2420-2425.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ingram L. O., Conway T. Expression of Different Levels of Ethanologenic Enzymes from Zymomonas mobilis in Recombinant Strains of Escherichia coli. Appl Environ Microbiol. 1988 Feb;54(2):397–404. doi: 10.1128/aem.54.2.397-404.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Krull L. H., Inglett G. E. Analysis of neutral carbohydrates in agricultural residues by gas-liquid chromatography. J Agric Food Chem. 1980 Sep-Oct;28(5):917–919. doi: 10.1021/jf60231a013. [DOI] [PubMed] [Google Scholar]
  7. Mackenzie K. F., Eddy C. K., Ingram L. O. Modulation of alcohol dehydrogenase isoenzyme levels in Zymomonas mobilis by iron and zinc. J Bacteriol. 1989 Feb;171(2):1063–1067. doi: 10.1128/jb.171.2.1063-1067.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Nabais R. C., Sá-Correia I., Viegas C. A., Novais J. M. Influence of Calcium Ion on Ethanol Tolerance of Saccharomyces bayanus and Alcoholic Fermentation by Yeasts. Appl Environ Microbiol. 1988 Oct;54(10):2439–2446. doi: 10.1128/aem.54.10.2439-2446.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Tolan J. S., Finn R. K. Fermentation of d-Xylose and l-Arabinose to Ethanol by Erwinia chrysanthemi. Appl Environ Microbiol. 1987 Sep;53(9):2033–2038. doi: 10.1128/aem.53.9.2033-2038.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Tolan J. S., Finn R. K. Fermentation of d-Xylose to Ethanol by Genetically Modified Klebsiella planticola. Appl Environ Microbiol. 1987 Sep;53(9):2039–2044. doi: 10.1128/aem.53.9.2039-2044.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES