Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1990 Mar;56(3):681–685. doi: 10.1128/aem.56.3.681-685.1990

Influence of transition metals added during sporulation on heat resistance of Clostridium botulinum 113B spores.

D J Kihm 1, M T Hutton 1, J H Hanlin 1, E A Johnson 1
PMCID: PMC183405  PMID: 2180370

Abstract

Sporulation of Clostridium botulinum 113B in a complex medium supplemented with certain transition metals (Fe, Mn, Cu, or Zn) at 0.01 to 1.0 mM gave spores that were increased two to sevenfold in their contents of the added metals. The contents of calcium, magnesium, and other metals in the purified spores were relatively unchanged. Inclusion of sodium citrate (3 g/liter) in the medium enhanced metal accumulation and gave consistency in the transition metal contents of independent spore crops. In citrate-supplemented media, C. botulinum formed spores with very high contents of Zn (approximately 1% of the dry weight). Spores containing an increased content of Fe (0.1 to 0.2%) were more susceptible to thermal killing than were native spores or spores containing increased Zn or Mn. The spores formed with added Fe or Cu also appeared less able to repair heat-induced injuries than the spores with added Mn or Zn. Fe-increased spores appeared to germinate and outgrow at a higher frequency than did native and Mn-increased spores. This study shows that C. botulinum spores can be sensitized to increased thermal destruction by incorporation of Fe in the spores.

Full text

PDF
681

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AMAHA M., ORDAL Z. J. Effect of divalent cations in the sporulation medium on the thermal death rate of Bacillus coagulans var. thermoacidurans. J Bacteriol. 1957 Nov;74(5):596–604. doi: 10.1128/jb.74.5.596-604.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alderton G., Chen J. K., Ito K. A. Effect of lysozyne on the recovery of heated Clostridium botulinum spores. Appl Microbiol. 1974 Mar;27(3):613–615. doi: 10.1128/am.27.3.613-615.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Alderton G., Ito K. A., Chen J. K. Chemical manipulation of the heat resistance of Clostridium botulinum spores. Appl Environ Microbiol. 1976 Apr;31(4):492–498. doi: 10.1128/aem.31.4.492-498.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Alderton G., Snell N. Bacterial spores: chemical sensitization to heat. Science. 1969 Mar 14;163(3872):1212–1213. doi: 10.1126/science.163.3872.1212. [DOI] [PubMed] [Google Scholar]
  5. Ando Y., Tsuzuki T. Mechanism of chemical manipulation of the heat resistance of Clostridium perfringens spores. J Appl Bacteriol. 1983 Apr;54(2):197–202. doi: 10.1111/j.1365-2672.1983.tb02607.x. [DOI] [PubMed] [Google Scholar]
  6. Aoki H., Slepecky R. A. Inducement of a heat-shock requirement for germination and production of increased heat resistance in Bacillus fastidiosus spores by manganous ions. J Bacteriol. 1973 Apr;114(1):137–143. doi: 10.1128/jb.114.1.137-143.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Archibald F. S., Fridovich I. Manganese and defenses against oxygen toxicity in Lactobacillus plantarum. J Bacteriol. 1981 Jan;145(1):442–451. doi: 10.1128/jb.145.1.442-451.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bender G. R., Marquis R. E. Spore heat resistance and specific mineralization. Appl Environ Microbiol. 1985 Dec;50(6):1414–1421. doi: 10.1128/aem.50.6.1414-1421.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. EL-BISI H. M., ORDAL Z. J. The effect of certain sporulation conditions on the thermal death rate of Bacillus coagulans var. thermoacidurans. J Bacteriol. 1956 Jan;71(1):1–9. doi: 10.1128/jb.71.1.1-9.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gould G. W., Dring G. J. Heat resistance of bacterial endospores and concept of an expanded osmoregulatory cortex. Nature. 1975 Dec 4;258(5534):402–405. doi: 10.1038/258402a0. [DOI] [PubMed] [Google Scholar]
  11. Krueger W. B., Kolodziej B. J. Divalent cation mobility throughout exponential growth and sporulation of Bacillus megaterium. Microbios. 1978;18(73-74):159–167. [PubMed] [Google Scholar]
  12. LEVINSON H. S., HYATT M. T. EFFECT OF SPORULATION MEDIUM ON HEAT RESISTANCE, CHEMICAL COMPOSITION, AND GERMINATION OF BACILLUS MEGATERIUM SPORES. J Bacteriol. 1964 Apr;87:876–886. doi: 10.1128/jb.87.4.876-886.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Loeb L. A., James E. A., Waltersdorph A. M., Klebanoff S. J. Mutagenesis by the autoxidation of iron with isolated DNA. Proc Natl Acad Sci U S A. 1988 Jun;85(11):3918–3922. doi: 10.1073/pnas.85.11.3918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Marquis R. E., Bender G. R. Mineralization and heat resistance of bacterial spores. J Bacteriol. 1985 Feb;161(2):789–791. doi: 10.1128/jb.161.2.789-791.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Rode L. J., Foster J. W. Quantitative aspects of exchangeable calcium in spores of Bacillus megaterium. J Bacteriol. 1966 Apr;91(4):1589–1593. doi: 10.1128/jb.91.4.1589-1593.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rosson R. A., Nealson K. H. Manganese binding and oxidation by spores of a marine bacillus. J Bacteriol. 1982 Aug;151(2):1027–1034. doi: 10.1128/jb.151.2.1027-1034.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. SLEPECKY R., FOSTER J. W. Alterations in metal content of spores of Bacillus megaterium and the effect on some spore properties. J Bacteriol. 1959 Jul;78(1):117–123. doi: 10.1128/jb.78.1.117-123.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Scherrer R., Shull V. E. Microincineration and elemental X-ray microanalysis of single Bacillus cereus T spores. Can J Microbiol. 1987 Apr;33(4):304–313. doi: 10.1139/m87-052. [DOI] [PubMed] [Google Scholar]
  19. Vamvakopoulos N. C., Vournakis J. N., Marcus S. L. The effect of magnesium and manganese ions on the structure and template activity for reverse transcriptase of polyribocytidylate and its 2'-0-methyl derivative. Nucleic Acids Res. 1977 Oct;4(10):3589–3597. doi: 10.1093/nar/4.10.3589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Whitmer M. E., Johnson E. A. Development of improved defined media for Clostridium botulinum serotypes A, B, and E. Appl Environ Microbiol. 1988 Mar;54(3):753–759. doi: 10.1128/aem.54.3.753-759.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES