Abstract
In vitro metabolism of D-xylulose and D-glucose in extracts obtained from D-glucose- and D-xylulose-fermenting Saccharomyces cerevisiae cells was investigated with 10- and 100-fold-increased activity of the enzyme transaldolase (EC 2.2.1.2). The rate of sugar consumption was the same in most cases, whereas the rate of ethanol formation decreased with increased levels of transaldolase. The formation of glycerol, pentitols, and acetic acid was not dependent on added transaldolase but was dependent on the sugar used as the growth substrate and on the sugar used in the in vitro metabolism experiments. The carbon balance showed that the dissimilated carbon could not be accounted for in products when transaldolase was added. The concentration of D-fructose-1,6.-diphosphate in the extracts was not influenced by added transaldolase but was higher with D-xylulose than with D-glucose. Levels of pyruvate, comparable with the two substrates, decreased with increasing levels of transaldolase. Exogenously added transaldolase decreased D-sedoheptulose-7-phosphate levels when D-xylulose was the substrate. The results are discussed in relation to the dissimilation of carbon through the upper part of glycolysis and the pentose phosphate pathway.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barnett J. A. The utilization of sugars by yeasts. Adv Carbohydr Chem Biochem. 1976;32:125–234. doi: 10.1016/s0065-2318(08)60337-6. [DOI] [PubMed] [Google Scholar]
- Bañuelos M., Gancedo C. In situ study of the glycolytic pathway in Saccharomyces cerevisiae. Arch Microbiol. 1978 May 30;117(2):197–201. doi: 10.1007/BF00402308. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Chiang L. C., Gong C. S., Chen L. F., Tsao G. T. d-Xylulose Fermentation to Ethanol by Saccharomyces cerevisiae. Appl Environ Microbiol. 1981 Aug;42(2):284–289. doi: 10.1128/aem.42.2.284-289.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gong C. S., Chen L. F., Flickinger M. C., Chiang L. C., Tsao G. T. Production of Ethanol from d-Xylose by Using d-Xylose Isomerase and Yeasts. Appl Environ Microbiol. 1981 Feb;41(2):430–436. doi: 10.1128/aem.41.2.430-436.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jonnalagadda S. B., Becker J. U., Sel'kov E. E., Betz A. Flux regulation in glycogen-induced oscillatory glycolysis in cell-free extracts of Saccharomyces carlsbergensis. Biosystems. 1982;15(1):49–58. doi: 10.1016/0303-2647(82)90016-8. [DOI] [PubMed] [Google Scholar]
- Schaaff I., Hohmann S., Zimmermann F. K. Molecular analysis of the structural gene for yeast transaldolase. Eur J Biochem. 1990 Mar 30;188(3):597–603. doi: 10.1111/j.1432-1033.1990.tb15440.x. [DOI] [PubMed] [Google Scholar]
- Senac T., Hahn-Hägerdal B. Intermediary Metabolite Concentrations in Xylulose- and Glucose-Fermenting Saccharomyces cerevisiae Cells. Appl Environ Microbiol. 1990 Jan;56(1):120–126. doi: 10.1128/aem.56.1.120-126.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Serrano R., Gancedo J. M., Gancedo C. Assay of yeast enzymes in situ. A potential tool in regulation studies. Eur J Biochem. 1973 May 2;34(3):479–482. doi: 10.1111/j.1432-1033.1973.tb02783.x. [DOI] [PubMed] [Google Scholar]
- Wang P. Y., Shopsis C., Schneider H. Fermentation of a pentose by yeasts. Biochem Biophys Res Commun. 1980 May 14;94(1):248–254. doi: 10.1016/s0006-291x(80)80213-0. [DOI] [PubMed] [Google Scholar]
- van Zyl C., Prior B. A., Kilian S. G., Kock J. L. D-xylose utilization by Saccharomyces cerevisiae. J Gen Microbiol. 1989 Nov;135(11):2791–2798. doi: 10.1099/00221287-135-11-2791. [DOI] [PubMed] [Google Scholar]