Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1991 Jun;57(6):1790–1792. doi: 10.1128/aem.57.6.1790-1792.1991

Assay for detection and enumeration of genetically engineered microorganisms which is based on the activity of a deregulated 2,4-dichlorophenoxyacetate monooxygenase.

R J King 1, K A Short 1, R J Seidler 1
PMCID: PMC183469  PMID: 1872608

Abstract

An assay system was developed for the enumeration of genetically engineered microorganisms expressing a deregulated 2,4-dichlorophenoxyacetate (TFD) monooxygenase, which converts phenoxyacetate (PAA) to phenol. In PAA-amended cultures of Pseudomonas aeruginosa PAO1C(pRO103) and Pseudomonas putida PPO301(pRO103), strains which express a deregulated TFD monooxygenase, phenol production was proportional to cell number. Phenol was reacted, under specific conditions, with a 4-aminoantipyrine dye to form an intensely colored dye-phenol complex (AAPPC), which when measured spectrophotometrically could detect as few as 10(3) cells per ml. This assay was corroborated by monitoring the disappearance of PAA and the accumulation of phenol by high-performance liquid chromatography and gas chromatography. The AAPPC assay was modified for use with plate cultures and clearly distinguished colonies of PPO301(pRO103) and PAO1C(pRO103) from a strain expressing a regulated TFD monooxygenase. Colonies of P. putida PPO301(pRO101) remained cream colored, while colonies of PPO301(pRO103) and PAO1C(pRO103) turned a distinct red.

Full text

PDF
1790

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cuskey S. M., Peccoraro V., Olsen R. H. Initial catabolism of aromatic biogenic amines by Pseudomonas aeruginosa PAO: pathway description, mapping of mutations, and cloning of essential genes. J Bacteriol. 1987 Jun;169(6):2398–2404. doi: 10.1128/jb.169.6.2398-2404.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Don R. H., Pemberton J. M. Properties of six pesticide degradation plasmids isolated from Alcaligenes paradoxus and Alcaligenes eutrophus. J Bacteriol. 1981 Feb;145(2):681–686. doi: 10.1128/jb.145.2.681-686.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Godwin D., Slater J. H. The influence of the growth environment on the stability of a drug resistance plasmid in Escherichia coli K12. J Gen Microbiol. 1979 Mar;111(1):201–210. doi: 10.1099/00221287-111-1-201. [DOI] [PubMed] [Google Scholar]
  4. Harker A. R., Olsen R. H., Seidler R. J. Phenoxyacetic acid degradation by the 2,4-dichlorophenoxyacetic acid (TFD) pathway of plasmid pJP4: mapping and characterization of the TFD regulatory gene, tfdR. J Bacteriol. 1989 Jan;171(1):314–320. doi: 10.1128/jb.171.1.314-320.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Morgan J. A., Winstanley C., Pickup R. W., Jones J. G., Saunders J. R. Direct phenotypic and genotypic detection of a recombinant pseudomonad population released into lake water. Appl Environ Microbiol. 1989 Oct;55(10):2537–2544. doi: 10.1128/aem.55.10.2537-2544.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Stotzky G., Babich H. Fate of genetically-engineered microbes in natural environments. Recomb DNA Tech Bull. 1984 Dec;7(4):163–188. [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES