Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1991 Jun;57(6):1799–1804. doi: 10.1128/aem.57.6.1799-1804.1991

Degradation of the Herbicide Glyphosate by Members of the Family Rhizobiaceae

C-M Liu 1,*, P A McLean 1, C C Sookdeo 1, F C Cannon 1,
PMCID: PMC183471  PMID: 16348512

Abstract

Several strains of the family Rhizobiaceae were tested for their ability to degrade the phosphonate herbicide glyphosate (isopropylamine salt of N-phosphonomethylglycine). All organisms tested (seven Rhizobium meliloti strains, Rhizobium leguminosarum, Rhizobium galega, Rhizobium trifolii, Agrobacterium rhizogenes, and Agrobacterium tumefaciens) were able to grow on glyphosate as the sole source of phosphorus in the presence of the aromatic amino acids, although growth on glyphosate was not as fast as on Pi. These results suggest that glyphosate degradation ability is widespread in the family Rhizobiaceae. Uptake and metabolism of glyphosate were studied by using R. meliloti 1021. Sarcosine was found to be the immediate breakdown product, indicating that the initial cleavage of glyphosate was at the C—P bond. Therefore, glyphosate breakdown in R. meliloti 1021 is achieved by a C—P lyase activity.

Full text

PDF
1799

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balthazor T. M., Hallas L. E. Glyphosate-degrading microorganisms from industrial activated sludge. Appl Environ Microbiol. 1986 Feb;51(2):432–434. doi: 10.1128/aem.51.2.432-434.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bencini D. A., Wild J. R., O'Donovan G. A. Linear one-step assay for the determination of orthophosphate. Anal Biochem. 1983 Jul 15;132(2):254–258. doi: 10.1016/0003-2697(83)90004-0. [DOI] [PubMed] [Google Scholar]
  3. Chen C. M., Ye Q. Z., Zhu Z. M., Wanner B. L., Walsh C. T. Molecular biology of carbon-phosphorus bond cleavage. Cloning and sequencing of the phn (psiD) genes involved in alkylphosphonate uptake and C-P lyase activity in Escherichia coli B. J Biol Chem. 1990 Mar 15;265(8):4461–4471. [PubMed] [Google Scholar]
  4. Jacob G. S., Garbow J. R., Hallas L. E., Kimack N. M., Kishore G. M., Schaefer J. Metabolism of glyphosate in Pseudomonas sp. strain LBr. Appl Environ Microbiol. 1988 Dec;54(12):2953–2958. doi: 10.1128/aem.54.12.2953-2958.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Johnston A. W., Beringer J. E. Identification of the rhizobium strains in pea root nodules using genetic markers. J Gen Microbiol. 1975 Apr;87(2):343–350. doi: 10.1099/00221287-87-2-343. [DOI] [PubMed] [Google Scholar]
  6. Kishore G. M., Jacob G. S. Degradation of glyphosate by Pseudomonas sp. PG2982 via a sarcosine intermediate. J Biol Chem. 1987 Sep 5;262(25):12164–12168. [PubMed] [Google Scholar]
  7. Meade H. M., Long S. R., Ruvkun G. B., Brown S. E., Ausubel F. M. Physical and genetic characterization of symbiotic and auxotrophic mutants of Rhizobium meliloti induced by transposon Tn5 mutagenesis. J Bacteriol. 1982 Jan;149(1):114–122. doi: 10.1128/jb.149.1.114-122.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Murata K., Higaki N., Kimura A. A microbial carbon-phosphorus bond cleavage enzyme requires two protein components for activity. J Bacteriol. 1989 Aug;171(8):4504–4506. doi: 10.1128/jb.171.8.4504-4506.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Murata K., Higaki N., Kimura A. Detection of carbon-phosphorus lyase activity in cell free extracts of Enterobacter aerogenes. Biochem Biophys Res Commun. 1988 Nov 30;157(1):190–195. doi: 10.1016/s0006-291x(88)80031-7. [DOI] [PubMed] [Google Scholar]
  10. Pipke R., Amrhein N., Jacob G. S., Schaefer J., Kishore G. M. Metabolism of glyphosate in an Arthrobacter sp. GLP-1. Eur J Biochem. 1987 Jun 1;165(2):267–273. doi: 10.1111/j.1432-1033.1987.tb11437.x. [DOI] [PubMed] [Google Scholar]
  11. Rueppel M. L., Brightwell B. B., Schaefer J., Marvel J. T. Metabolism and degradation of glyphosphate in soil and water. J Agric Food Chem. 1977 May-Jun;25(3):517–528. doi: 10.1021/jf60211a018. [DOI] [PubMed] [Google Scholar]
  12. Sciaky D., Montoya A. L., Chilton M. D. Fingerprints of Agrobacterium Ti plasmids. Plasmid. 1978 Feb;1(2):238–253. doi: 10.1016/0147-619x(78)90042-2. [DOI] [PubMed] [Google Scholar]
  13. Shinabarger D. L., Schmitt E. K., Braymer H. D., Larson A. D. Phosphonate Utilization by the Glyphosate-Degrading Pseudomonas sp. Strain PG2982. Appl Environ Microbiol. 1984 Nov;48(5):1049–1050. doi: 10.1128/aem.48.5.1049-1050.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Steinrücken H. C., Amrhein N. The herbicide glyphosate is a potent inhibitor of 5-enolpyruvyl-shikimic acid-3-phosphate synthase. Biochem Biophys Res Commun. 1980 Jun 30;94(4):1207–1212. doi: 10.1016/0006-291x(80)90547-1. [DOI] [PubMed] [Google Scholar]
  15. Van Larebeke N., Engler G., Holsters M., Van den Elsacker S., Zaenen I., Schilperoort R. A., Schell J. Large plasmid in Agrobacterium tumefaciens essential for crown gall-inducing ability. Nature. 1974 Nov 8;252(5479):169–170. doi: 10.1038/252169a0. [DOI] [PubMed] [Google Scholar]
  16. Wackett L. P., Shames S. L., Venditti C. P., Walsh C. T. Bacterial carbon-phosphorus lyase: products, rates, and regulation of phosphonic and phosphinic acid metabolism. J Bacteriol. 1987 Feb;169(2):710–717. doi: 10.1128/jb.169.2.710-717.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES