Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1991 Jul;57(7):1873–1879. doi: 10.1128/aem.57.7.1873-1879.1991

Development and application of a multiple typing system for Clostridium difficile.

D E Mahony 1, J Clow 1, L Atkinson 1, N Vakharia 1, W F Schlech 1
PMCID: PMC183493  PMID: 1892377

Abstract

A combination of bacteriocin, bacteriophage, and plasmid typing techniques was used to differentiate strains of Clostridium difficile. A typing set of 20 bacteriocin-producing strains was established after 400 isolates of C. difficile were screened for the ability to produce bacteriocin. These strains were used to type a collection of 114 isolates of C. difficile. Forty-six (40%) of the 114 isolates were typeable, and 31 typing patterns were distinguishable. Plasmid typing of the same 114 isolates of C. difficile showed that 67 (59%) of the isolates carried up to four plasmids ranging from 7 to 60 kb in size, although most strains contained only one or two plasmids. Twenty different plasmid typing patterns were observed among the isolates. A combination of bacteriocin and plasmid typing provided 77% typeability. Fifteen (13%) of the 114 strains were typeable with five bacteriophages isolated in our laboratory, but the increase in typeability of strains over that obtainable by plasmid and bacteriocin typing was only 1.8%. Isolates that were nontypeable by bacteriocins, plasmids, or phages could be divided into two groups on the basis of positive or negative cytotoxin production. This further division of strains would increase the typeability potential by 7%; i.e., the ability to differentiate strains would rise from 77 to 84%, or perhaps 86%, if phage typing were included. We conclude that more than one of the techniques reported in this paper must be used to achieve an acceptable level of typeability of this species.

Full text

PDF
1873

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bacon A. E., Fekety R., Schaberg D. R., Faix R. G. Epidemiology of Clostridium difficile colonization in newborns: results using a bacteriophage and bacteriocin typing system. J Infect Dis. 1988 Aug;158(2):349–354. doi: 10.1093/infdis/158.2.349. [DOI] [PubMed] [Google Scholar]
  2. Borriello S. P., Honour P., Barclay F. Cross infection and Clostridium difficile. Lancet. 1982 Sep 18;2(8299):661–661. doi: 10.1016/s0140-6736(82)92763-5. [DOI] [PubMed] [Google Scholar]
  3. Borriello S. P., Honour P. Concomitance of cytotoxigenic and non-cytotoxigenic Clostridium difficile in stool specimens. J Clin Microbiol. 1983 Oct;18(4):1006–1007. doi: 10.1128/jcm.18.4.1006-1007.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cumming A. D., Thomson B. J., Sharp J., Poxton I. R., Fraser A. Diarrhoea due to Clostridium difficile associated with antibiotic treatment in patients receiving dialysis: the role of cross infection. Br Med J (Clin Res Ed) 1986 Jan 25;292(6515):238–239. doi: 10.1136/bmj.292.6515.238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Delmee M., Bulliard G., Simon G. Application of a technique for serogrouping Clostridium difficile in an outbreak of antibiotic-associated diarrhoea. J Infect. 1986 Jul;13(1):5–9. doi: 10.1016/s0163-4453(86)92095-5. [DOI] [PubMed] [Google Scholar]
  6. Delmee M., Homel M., Wauters G. Serogrouping of Clostridium difficile strains by slide agglutination. J Clin Microbiol. 1985 Mar;21(3):323–327. doi: 10.1128/jcm.21.3.323-327.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Delmée M., Avesani V., Delferriere N., Burtonboy G. Characterization of flagella of Clostridium difficile and their role in serogrouping reactions. J Clin Microbiol. 1990 Oct;28(10):2210–2214. doi: 10.1128/jcm.28.10.2210-2214.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hawkins C. C., Buggy B. P., Fekety R., Schaberg D. R. Epidemiology of colitis induced by Clostridium difficile in hamsters: application of a bacteriophage and bacteriocin typing system. J Infect Dis. 1984 May;149(5):775–780. doi: 10.1093/infdis/149.5.775. [DOI] [PubMed] [Google Scholar]
  9. Heard S. R., O'Farrell S., Holland D., Crook S., Barnett M. J., Tabaqchali S. The epidemiology of Clostridium difficile with use of a typing scheme: nosocomial acquisition and cross-infection among immunocompromised patients. J Infect Dis. 1986 Jan;153(1):159–162. doi: 10.1093/infdis/153.1.159. [DOI] [PubMed] [Google Scholar]
  10. Heard S. R., Rasburn B., Matthews R. C., Tabaqchali S. Immunoblotting to demonstrate antigenic and immunogenic differences among nine standard strains of Clostridium difficile. J Clin Microbiol. 1986 Sep;24(3):384–387. doi: 10.1128/jcm.24.3.384-387.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hächler H., Wüst J. Reexamination by bacteriophage typing of Clostridium difficile strains isolated during a nosocomial outbreak. J Clin Microbiol. 1984 Sep;20(3):604–604. doi: 10.1128/jcm.20.3.604-.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kim K., DuPont H. L., Pickering L. K. Outbreaks of diarrhea associated with Clostridium difficile and its toxin in day-care centers: evidence of person-to-person spread. J Pediatr. 1983 Mar;102(3):376–382. doi: 10.1016/s0022-3476(83)80652-0. [DOI] [PubMed] [Google Scholar]
  13. Mahony D. E., Bell P. D., Easterbrook K. B. Two bacteriophages of Clostridium difficile. J Clin Microbiol. 1985 Feb;21(2):251–254. doi: 10.1128/jcm.21.2.251-254.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mahony D. E., Clark G. A., Stringer M. F., MacDonald M. C., Duchesne D. R., Mader J. A. Rapid extraction of plasmids from Clostridium perfringens. Appl Environ Microbiol. 1986 Mar;51(3):521–523. doi: 10.1128/aem.51.3.521-523.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. McFarland L. V., Stamm W. E. Review of Clostridium difficile-associated diseases. Am J Infect Control. 1986 Jun;14(3):99–109. doi: 10.1016/0196-6553(86)90018-0. [DOI] [PubMed] [Google Scholar]
  16. McFarland L. V., Surawicz C. M., Stamm W. E. Risk factors for Clostridium difficile carriage and C. difficile-associated diarrhea in a cohort of hospitalized patients. J Infect Dis. 1990 Sep;162(3):678–684. doi: 10.1093/infdis/162.3.678. [DOI] [PubMed] [Google Scholar]
  17. Muldrow L. L., Archibold E. R., Nunez-Montiel O. L., Sheehy R. J. Survey of the extrachromosomal gene pool of Clostridium difficile. J Clin Microbiol. 1982 Oct;16(4):637–640. doi: 10.1128/jcm.16.4.637-640.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mulligan M. E., Peterson L. R., Kwok R. Y., Clabots C. R., Gerding D. N. Immunoblots and plasmid fingerprints compared with serotyping and polyacrylamide gel electrophoresis for typing Clostridium difficile. J Clin Microbiol. 1988 Jan;26(1):41–46. doi: 10.1128/jcm.26.1.41-46.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Poxton I. R., Aronsson B., Möllby R., Nord C. E., Collee J. G. Immunochemical fingerprinting of Clostridium difficile strains isolated from an outbreak of antibiotic-associated colitis and diarrhoea. J Med Microbiol. 1984 Jun;17(3):317–324. doi: 10.1099/00222615-17-3-317. [DOI] [PubMed] [Google Scholar]
  20. Riley T. V., Mee B. J. Simple method for detecting Bacteroides spp. bacteriocin production. J Clin Microbiol. 1981 Mar;13(3):594–595. doi: 10.1128/jcm.13.3.594-595.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sell T. L., Schaberg D. R., Fekety F. R. Bacteriophage and bacteriocin typing scheme for Clostridium difficile. J Clin Microbiol. 1983 Jun;17(6):1148–1152. doi: 10.1128/jcm.17.6.1148-1152.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Strimling M. O., Sacho H., Berkowitz I. Clostridium difficile infection in health-care workers. Lancet. 1989 Oct 7;2(8667):866–867. doi: 10.1016/s0140-6736(89)93034-1. [DOI] [PubMed] [Google Scholar]
  23. Tabaqchali S., Holland D., O'Farrell S., Silman R. Typing scheme for Clostridium difficile: its application in clinical and epidemiological studies. Lancet. 1984 Apr 28;1(8383):935–938. doi: 10.1016/s0140-6736(84)92392-4. [DOI] [PubMed] [Google Scholar]
  24. Tabaqchali S., O'Farrell S., Holland D., Silman R. Method for the typing of Clostridium difficile based on polyacrylamide gel electrophoresis of [35S]methionine-labeled proteins. J Clin Microbiol. 1986 Jan;23(1):197–198. doi: 10.1128/jcm.23.1.197-198.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Tabaqchali S., O'Farrell S., Nash J. Q., Wilks M. Vaginal carriage and neonatal acquisition of Clostridium difficile. J Med Microbiol. 1984 Aug;18(1):47–53. doi: 10.1099/00222615-18-1-47. [DOI] [PubMed] [Google Scholar]
  26. Toma S., Lesiak G., Magus M., Lo H. L., Delmée M. Serotyping of Clostridium difficile. J Clin Microbiol. 1988 Mar;26(3):426–428. doi: 10.1128/jcm.26.3.426-428.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Tucker K. D., Carrig P. E., Wilkins T. D. Toxin A of Clostridium difficile is a potent cytotoxin. J Clin Microbiol. 1990 May;28(5):869–871. doi: 10.1128/jcm.28.5.869-871.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wüst J., Sullivan N. M., Hardegger U., Wilkins T. D. Investigation of an outbreak of antibiotic-associated colitis by various typing methods. J Clin Microbiol. 1982 Dec;16(6):1096–1101. doi: 10.1128/jcm.16.6.1096-1101.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES