Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1991 Aug;57(8):2293–2301. doi: 10.1128/aem.57.8.2293-2301.1991

Regiospecific dechlorination of pentachlorophenol by dichlorophenol-adapted microorganisms in freshwater, anaerobic sediment slurries.

F O Bryant 1, D D Hale 1, J E Rogers 1
PMCID: PMC183566  PMID: 1768102

Abstract

The reductive dechlorination of pentachlorophenol (PCP) was investigated in anaerobic sediments that contained nonadapted or 2,4- or 3,4-dichlorophenol (DCP)-adapted microbial communities. Adaptation of sediment communities increased the rate of conversion of 2,4- or 3,4-DCP to monochlorophenols (CPs) and eliminated the lag phase before dechlorination was observed. Both 2,4- and 3,4-DCP-adapted sediment communities dechlorinated the six DCP isomers to CPs. The specificity of chlorine removal from the DCP isomers indicated a preference for ortho-chlorine removal by 2,4-DCP-adapted sediment communities and for para-chlorine removal by 3,4-DCP-adapted sediment communities. Sediment slurries containing nonadapted microbial communities either did not dechlorinate PCP or did so following a lag phase of at least 40 days. Sediment communities adapted to dechlorinate 2,4- or 3,4-DCP dechlorinated PCP without an initial lag phase. The 2,4-DCP-adapted communities initially removed the ortho-chlorine from PCP, whereas the 3,4-DCP-adapted communities initially removed the para-chlorine from PCP. A 1:1 mixture of the adapted sediment communities also dechlorinated PCP without a lag phase. Dechlorination by the mixture was regiospecific, following a para greater than ortho greater than meta order of chlorine removal. Intermediate products of degradation, 2,3,5,6-tetrachlorophenol, 2,3,5-trichlorophenol, 3,5-DCP, 3-CP, and phenol, were identified by a combination of cochromatography (high-pressure liquid chromatography) with standards and gas chromatography-mass spectrometry.

Full text

PDF
2293

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bauchinger M., Dresp J., Schmid E., Hauf R. Chromosome changes in lymphocytes after occupational exposure to pentachlorophenol (PCP). Mutat Res. 1982 Jul-Aug;102(1):83–88. doi: 10.1016/0165-1218(82)90148-3. [DOI] [PubMed] [Google Scholar]
  2. Boyd S. A., Shelton D. R. Anaerobic biodegradation of chlorophenols in fresh and acclimated sludge. Appl Environ Microbiol. 1984 Feb;47(2):272–277. doi: 10.1128/aem.47.2.272-277.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DeMarini D. M., Brooks H. G., Parkes D. G., Jr Induction of prophage lambda by chlorophenols. Environ Mol Mutagen. 1990;15(1):1–9. doi: 10.1002/em.2850150102. [DOI] [PubMed] [Google Scholar]
  4. Genthner B. R., Price W. A., Pritchard P. H. Characterization of anaerobic dechlorinating consortia derived from aquatic sediments. Appl Environ Microbiol. 1989 Jun;55(6):1472–1476. doi: 10.1128/aem.55.6.1472-1476.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Häggblom M. M., Nohynek L. J., Salkinoja-Salonen M. S. Degradation and O-methylation of chlorinated phenolic compounds by Rhodococcus and Mycobacterium strains. Appl Environ Microbiol. 1988 Dec;54(12):3043–3052. doi: 10.1128/aem.54.12.3043-3052.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lamar R. T., Dietrich D. M. In Situ Depletion of Pentachlorophenol from Contaminated Soil by Phanerochaete spp. Appl Environ Microbiol. 1990 Oct;56(10):3093–3100. doi: 10.1128/aem.56.10.3093-3100.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Mikesell M. D., Boyd S. A. Complete reductive dechlorination and mineralization of pentachlorophenol by anaerobic microorganisms. Appl Environ Microbiol. 1986 Oct;52(4):861–865. doi: 10.1128/aem.52.4.861-865.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Mileski G. J., Bumpus J. A., Jurek M. A., Aust S. D. Biodegradation of pentachlorophenol by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol. 1988 Dec;54(12):2885–2889. doi: 10.1128/aem.54.12.2885-2889.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Murthy N. B., Kaufman D. D., Fries G. F. Degradation of pentachlorophenol (PCP) in aerobic and anaerobic soil. J Environ Sci Health B. 1979;14(1):1–14. doi: 10.1080/03601237909372110. [DOI] [PubMed] [Google Scholar]
  10. Saber D. L., Crawford R. L. Isolation and characterization of Flavobacterium strains that degrade pentachlorophenol. Appl Environ Microbiol. 1985 Dec;50(6):1512–1518. doi: 10.1128/aem.50.6.1512-1518.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Stanlake G. J., Finn R. K. Isolation and characterization of a pentachlorophenol-degrading bacterium. Appl Environ Microbiol. 1982 Dec;44(6):1421–1427. doi: 10.1128/aem.44.6.1421-1427.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Struijs J., Rogers J. E. Reductive dehalogenation of dichloroanilines by anaerobic microorganisms in fresh and dichlorophenol-acclimated pond sediment. Appl Environ Microbiol. 1989 Oct;55(10):2527–2531. doi: 10.1128/aem.55.10.2527-2531.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Topp E., Crawford R. L., Hanson R. S. Influence of readily metabolizable carbon on pentachlorophenol metabolism by a pentachlorophenol-degrading Flavobacterium sp. Appl Environ Microbiol. 1988 Oct;54(10):2452–2459. doi: 10.1128/aem.54.10.2452-2459.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Yokoyama M. T., Johnson K. A., Gierzak J. Sensitivity of ruminal microorganisms to pentachlorophenol. Appl Environ Microbiol. 1988 Nov;54(11):2619–2624. doi: 10.1128/aem.54.11.2619-2624.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES