Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1991 Aug;57(8):2403–2407. doi: 10.1128/aem.57.8.2403-2407.1991

Biodegradation of monoaromatic hydrocarbons by aquifer microorganisms using oxygen, nitrate, or nitrous oxide as the terminal electron acceptor.

S R Hutchins 1
PMCID: PMC183584  PMID: 1768110

Abstract

Microcosms were prepared from aquifer material, spiked with monoaromatic hydrocarbons, and amended with oxygen, nitrate, and nitrous oxide. Benzene and alkylbenzenes were degraded to concentrations below 5 micrograms/liter within 7 days under aerobic conditions, whereas only the alkylbenzenes were degraded when either nitrate or nitrous oxide was used. With limited oxygen, monoaromatic hydrocarbons were degraded but removal ceased once oxygen was consumed. However, when nitrate was also present, biodegradation of the alkylbenzenes continued with no apparent lag. Although benzene was still recalcitrant, levels were reduced compared with levels after treatment with nitrate or limited oxygen alone.

Full text

PDF
2403

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bouwer E. J., McCarty P. L. Transformations of halogenated organic compounds under denitrification conditions. Appl Environ Microbiol. 1983 Apr;45(4):1295–1299. doi: 10.1128/aem.45.4.1295-1299.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Kuhn E. P., Zeyer J., Eicher P., Schwarzenbach R. P. Anaerobic degradation of alkylated benzenes in denitrifying laboratory aquifer columns. Appl Environ Microbiol. 1988 Feb;54(2):490–496. doi: 10.1128/aem.54.2.490-496.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Mihelcic J. R., Luthy R. G. Microbial degradation of acenaphthene and naphthalene under denitrification conditions in soil-water systems. Appl Environ Microbiol. 1988 May;54(5):1188–1198. doi: 10.1128/aem.54.5.1188-1198.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Zeyer J., Kuhn E. P., Schwarzenbach R. P. Rapid microbial mineralization of toluene and 1,3-dimethylbenzene in the absence of molecular oxygen. Appl Environ Microbiol. 1986 Oct;52(4):944–947. doi: 10.1128/aem.52.4.944-947.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES