Abstract
The aim of the study was to assess whether increased energy expenditure causes the negative energy balance (tissue catabolism) commonly seen in children with insulin dependent (type I) diabetes. Resting metabolic rate and thermogenesis induced by adrenaline were measured in five healthy children and 14 children with type I diabetes who were all free of clinical signs of late complications of diabetes mellitus but differed in their degree of glycaemic control (in eight glycated haemoglobin concentration was less than 10% and in the six others greater than or equal to 10%). When compared with the control subjects children with type I diabetes had normal resting metabolic rates but their urinary nitrogen excretion was significantly raised (11.5 (SD 5.4) mg/min in those with glycated haemoglobin concentration less than 10%, 11.6 (5.2) mg/min in those with concentration greater than or equal to 10% v 5.4 (3.0) mg/min in control subjects). During the infusion of adrenaline the diabetic children showed a threefold and sustained increase in thermogenesis and disproportionate increases in the work done by the heart, in lipid oxidation rate, and in plasma concentrations of glucose, free fatty acids, and ketone bodies. The increased thermogenic effect of adrenaline did not correlate with the degree of glycaemic control. Increased thermogenesis may explain the tissue wasting commonly seen in children with type I diabetes during intercurrent stress.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abu Khaled M., McCutcheon M. J., Reddy S., Pearman P. L., Hunter G. R., Weinsier R. L. Electrical impedance in assessing human body composition: the BIA method. Am J Clin Nutr. 1988 May;47(5):789–792. doi: 10.1093/ajcn/47.5.789. [DOI] [PubMed] [Google Scholar]
- Calabrese G., Bueti A., Santeusanio F., Giombolini A., Zega G., Angeletti G., Cartechini M. G., Brunetti P. Continuous subcutaneous insulin infusion treatment in insulin-dependent diabetic patients: a comparison with conventional optimized treatment in a long-term study. Diabetes Care. 1982 Sep-Oct;5(5):457–465. doi: 10.2337/diacare.5.5.457. [DOI] [PubMed] [Google Scholar]
- DeFronzo R. A., Simonson D., Ferrannini E. Hepatic and peripheral insulin resistance: a common feature of type 2 (non-insulin-dependent) and type 1 (insulin-dependent) diabetes mellitus. Diabetologia. 1982 Oct;23(4):313–319. doi: 10.1007/BF00253736. [DOI] [PubMed] [Google Scholar]
- Forse R. A., Leibel R., Askanazi J., Hirsch J., Kinney J. M. Adrenergic control of adipocyte lipolysis in trauma and sepsis. Ann Surg. 1987 Dec;206(6):744–751. doi: 10.1097/00000658-198712000-00010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fukagawa N. K., Minaker K. L., Rowe J. W., Goodman M. N., Matthews D. E., Bier D. M., Young V. R. Insulin-mediated reduction of whole body protein breakdown. Dose-response effects on leucine metabolism in postabsorptive men. J Clin Invest. 1985 Dec;76(6):2306–2311. doi: 10.1172/JCI112240. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gelfand R. A., Hutchinson-Williams K. A., Bonde A. A., Castellino P., Sherwin R. S. Catabolic effects of thyroid hormone excess: the contribution of adrenergic activity to hypermetabolism and protein breakdown. Metabolism. 1987 Jun;36(6):562–569. doi: 10.1016/0026-0495(87)90168-5. [DOI] [PubMed] [Google Scholar]
- Huszar G., Koivisto V., Davis E., Felig P. Urinary 3-methylhistidine excretion in juvenile-onset diabetics: evidence of increased protein catabolism in the absence of ketoacidosis. Metabolism. 1982 Feb;31(2):188–191. doi: 10.1016/0026-0495(82)90134-2. [DOI] [PubMed] [Google Scholar]
- Jayarajan M. P., Shetty P. S. Cardiovascular beta-adrenoceptor sensitivity of undernourished subjects. Br J Nutr. 1987 Jul;58(1):5–11. doi: 10.1079/bjn19870063. [DOI] [PubMed] [Google Scholar]
- Jensen M. D., Haymond M. W., Gerich J. E., Cryer P. E., Miles J. M. Lipolysis during fasting. Decreased suppression by insulin and increased stimulation by epinephrine. J Clin Invest. 1987 Jan;79(1):207–213. doi: 10.1172/JCI112785. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kahn J. K., Sisson J. C., Vinik A. I. QT interval prolongation and sudden cardiac death in diabetic autonomic neuropathy. J Clin Endocrinol Metab. 1987 Apr;64(4):751–754. doi: 10.1210/jcem-64-4-751. [DOI] [PubMed] [Google Scholar]
- Kitamura K., Jorgensen C. R., Gobel F. L., Taylor H. L., Wang Y. Hemodynamic correlates of myocardial oxygen consumption during upright exercise. J Appl Physiol. 1972 Apr;32(4):516–522. doi: 10.1152/jappl.1972.32.4.516. [DOI] [PubMed] [Google Scholar]
- Leslie P., Jung R. T., Isles T. E., Baty J., Newton R. W., Illingworth P. Effect of optimal glycaemic control with continuous subcutaneous insulin infusion on energy expenditure in type I diabetes mellitus. Br Med J (Clin Res Ed) 1986 Nov 1;293(6555):1121–1126. doi: 10.1136/bmj.293.6555.1121. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lukaski H. C., Johnson P. E., Bolonchuk W. W., Lykken G. I. Assessment of fat-free mass using bioelectrical impedance measurements of the human body. Am J Clin Nutr. 1985 Apr;41(4):810–817. doi: 10.1093/ajcn/41.4.810. [DOI] [PubMed] [Google Scholar]
- Müller M. J., Acheson K. J., Jequier E., Burger A. G. Effect of thyroid hormones on oxidative and nonoxidative glucose metabolism in humans. Am J Physiol. 1988 Aug;255(2 Pt 1):E146–E152. doi: 10.1152/ajpendo.1988.255.2.E146. [DOI] [PubMed] [Google Scholar]
- Müller M. J., Paschen U., Seitz H. J. Effect of ketone bodies on glucose production and utilization in the miniature pig. J Clin Invest. 1984 Jul;74(1):249–261. doi: 10.1172/JCI111408. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nair K. S., Halliday D., Garrow J. S. Increased energy expenditure in poorly controlled Type 1 (insulin-dependent) diabetic patients. Diabetologia. 1984 Jul;27(1):13–16. doi: 10.1007/BF00253494. [DOI] [PubMed] [Google Scholar]
- Proietto J., Nankervis A., Aitken P., Caruso G., Alford F. Glucose utilization in Type 1 (insulin-dependent) diabetes: Evidence for a defect not reversible by acute elevations of insulin. Diabetologia. 1983 Oct;25(4):331–335. doi: 10.1007/BF00253196. [DOI] [PubMed] [Google Scholar]
- Rizza R. A., Mandarino L. J., Gerich J. E. Dose-response characteristics for effects of insulin on production and utilization of glucose in man. Am J Physiol. 1981 Jun;240(6):E630–E639. doi: 10.1152/ajpendo.1981.240.6.E630. [DOI] [PubMed] [Google Scholar]
- Shamoon H., Hendler R., Sherwin R. S. Altered responsiveness to cortisol, epinephrine, and glucagon in insulin-infused juvenile-onset diabetics. A mechanism for diabetic instability. Diabetes. 1980 Apr;29(4):284–291. doi: 10.2337/diab.29.4.284. [DOI] [PubMed] [Google Scholar]
- Sims E. A., Danforth E., Jr Expenditure and storage of energy in man. J Clin Invest. 1987 Apr;79(4):1019–1025. doi: 10.1172/JCI112913. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yki-Järvinen H., Koivisto V. A. Natural course of insulin resistance in type I diabetes. N Engl J Med. 1986 Jul 24;315(4):224–230. doi: 10.1056/NEJM198607243150404. [DOI] [PubMed] [Google Scholar]
