Abstract
Agitated, nitrogen-limited cultures of Phlebia tremellosa caused substantial changes in the distribution of 14C-labelled synthetic lignin (dehydrogenative polymerizate [DHP]) between water-soluble, dioxane-soluble, alkali-soluble, and insoluble fractions before much lignin carbon was metabolized to CO2. First, the insoluble form increased at the expense of the dioxane-soluble form. Later, the amounts of alkali-soluble and water-soluble 14C increased, and release of 14CO2 began. The molecular weight distribution of the dioxane-soluble lignin remained constant during degradation, but that of the water-soluble fraction changed to higher molecular weights. Culture agitation accelerated the attachment of suspended DHP to the mycelia and stimulated production of water-soluble 14C and 14CO2. The nonionic detergent Tween 80 also hastened release of 14CO2 and increased the early conversion of dioxane-soluble DHP to the alkali-soluble and insoluble forms. Oxidative polymerization is suggested as the first step in degradation of DHP by P. tremellosa.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abbott T. P., Wicklow D. T. Degradation of lignin by cyathus species. Appl Environ Microbiol. 1984 Mar;47(3):585–587. doi: 10.1128/aem.47.3.585-587.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blanchette R. A., Reid I. D. Ultrastructural Aspects of Wood Delignification by Phlebia (Merulius) tremellosus. Appl Environ Microbiol. 1986 Aug;52(2):239–245. doi: 10.1128/aem.52.2.239-245.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bonnarme P., Jeffries T. W. Mn(II) Regulation of Lignin Peroxidases and Manganese-Dependent Peroxidases from Lignin-Degrading White Rot Fungi. Appl Environ Microbiol. 1990 Jan;56(1):210–217. doi: 10.1128/aem.56.1.210-217.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ernst T., Meinhold G. Ein Beitrag zur angeborenen Aglossie. Dtsch Zahn Mund Kieferheilkd Zentralbl Gesamte. 1964;43(9):375–384. [PubMed] [Google Scholar]
- FAHRAEUS G. Monophenolase and polyphenolase activity of fungal laccase. Biochim Biophys Acta. 1961 Nov 25;54:192–194. doi: 10.1016/0006-3002(61)90955-6. [DOI] [PubMed] [Google Scholar]
- Faison B. D., Kirk T. K. Factors Involved in the Regulation of a Ligninase Activity in Phanerochaete chrysosporium. Appl Environ Microbiol. 1985 Feb;49(2):299–304. doi: 10.1128/aem.49.2.299-304.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jäger A., Croan S., Kirk T. K. Production of Ligninases and Degradation of Lignin in Agitated Submerged Cultures of Phanerochaete chrysosporium. Appl Environ Microbiol. 1985 Nov;50(5):1274–1278. doi: 10.1128/aem.50.5.1274-1278.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kirk T. K., Farrell R. L. Enzymatic "combustion": the microbial degradation of lignin. Annu Rev Microbiol. 1987;41:465–505. doi: 10.1146/annurev.mi.41.100187.002341. [DOI] [PubMed] [Google Scholar]
- Odier E., Mozuch M. D., Kalyanaraman B., Kirk T. K. Ligninase-mediated phenoxy radical formation and polymerization unaffected by cellobiose:quinone oxidoreductase. Biochimie. 1988 Jun;70(6):847–852. doi: 10.1016/0300-9084(88)90117-4. [DOI] [PubMed] [Google Scholar]
- Reid I. D. Biological Delignification of Aspen Wood by Solid-State Fermentation with the White-Rot Fungus Merulius tremellosus. Appl Environ Microbiol. 1985 Jul;50(1):133–139. doi: 10.1128/aem.50.1.133-139.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sarkanen S., Razal R. A., Piccariello T., Yamamoto E., Lewis N. G. Lignin peroxidase: toward a clarification of its role in vivo. J Biol Chem. 1991 Feb 25;266(6):3636–3643. [PubMed] [Google Scholar]
- Ulmer D. C., Leisola M. S., Schmidt B. H., Fiechter A. Rapid Degradation of Isolated Lignins by Phanerochaete chrysosporium. Appl Environ Microbiol. 1983 Jun;45(6):1795–1801. doi: 10.1128/aem.45.6.1795-1801.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
