Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1991 Nov;57(11):3350–3354. doi: 10.1128/aem.57.11.3350-3354.1991

Branched-Chain Amino Acid Transport in Cytoplasmic Membranes of Leuconostoc mesenteroides subsp. dextranicum CNRZ 1273

David A Winters 1, Bert Poolman 1,*, Denis Hemme 1, Wil N Konings 1
PMCID: PMC183970  PMID: 16348591

Abstract

Membrane vesicles of Leuconostoc mesenteroides subsp. dextranicum fused with proteoliposomes prepared from Escherichia coli phospholipids containing beef heart cytochrome c oxidase were used to study the transport of branched-chain amino acids in a strain isolated from a raw milk cheese. At a medium pH of 6.0, oxidation of an electron donor system comprising ascorbate, N,N,N′,N′-tetramethyl-p-phenylenediamine, and horse heart cytochrome c resulted in a membrane potential (Δψ) of −60 mV, a pH gradient of −36 mV, and an l-leucine accumulation of 76-fold (ΔμLeu/F = 108 mV). Leucine uptake in hybrid membranes in which a Δψ, ΔpH, sodium ion gradient, or a combination of these was imposed artificially revealed that both components of the proton motive force (Δp) could drive leucine uptake but that a chemical sodium gradient could not. Kinetic analysis of leucine (valine) transport indicated three secondary transport systems with Kt values of 1.7 (0.8) mM, 4.3 (5.9) μM, and 65 (29) nM, respectively. l-Leucine transport via the high-affinity leucine transport system (Kt = 4.3 μM) was competitively inhibited by l-valine and l-isoleucine (Ki and Kt values were similar), demonstrating that the transport system translocates branched-chain amino acids. Similar studies with these hybrid membranes indicated the presence of high-affinity secondary transport systems for 10 other amino acids.

Full text

PDF
3350

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Booth I. R., Hamilton W. A. Quantitative analysis of proton-linked transport system. beta-Galactoside exit in Escherichia coli. Biochem J. 1980 May 15;188(2):467–473. doi: 10.1042/bj1880467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Driessen A. J., Hellingwerf K. J., Konings W. N. Mechanism of energy coupling to entry and exit of neutral and branched chain amino acids in membrane vesicles of Streptococcus cremoris. J Biol Chem. 1987 Sep 15;262(26):12438–12443. [PubMed] [Google Scholar]
  3. Driessen A. J. Secondary transport of amino acids by membrane vesicles derived from lactic acid bacteria. Antonie Van Leeuwenhoek. 1989 Aug;56(2):139–160. doi: 10.1007/BF00399978. [DOI] [PubMed] [Google Scholar]
  4. Driessen A. J., Ubbink-Kok T., Konings W. N. Amino acid transport by membrane vesicles of an obligate anaerobic bacterium, Clostridium acetobutylicum. J Bacteriol. 1988 Feb;170(2):817–820. doi: 10.1128/jb.170.2.817-820.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Driessen A. J., de Jong S., Konings W. N. Transport of branched-chain amino acids in membrane vesicles of Streptococcus cremoris. J Bacteriol. 1987 Nov;169(11):5193–5200. doi: 10.1128/jb.169.11.5193-5200.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Driessen A. J., de Vrij W., Konings W. N. Functional incorporation of beef-heart cytochrome c oxidase into membranes of Streptococcus cremoris. Eur J Biochem. 1986 Feb 3;154(3):617–624. doi: 10.1111/j.1432-1033.1986.tb09443.x. [DOI] [PubMed] [Google Scholar]
  7. Driessen A. J., de Vrij W., Konings W. N. Incorporation of beef heart cytochrome c oxidase as a proton-motive force-generating mechanism in bacterial membrane vesicles. Proc Natl Acad Sci U S A. 1985 Nov;82(22):7555–7559. doi: 10.1073/pnas.82.22.7555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hinkle P. C., Kim J. J., Racker E. Ion transport and respiratory control in vesicles formed from cytochrome oxidase and phospholipids. J Biol Chem. 1972 Feb 25;247(4):1338–1339. [PubMed] [Google Scholar]
  9. Konings W. N., Poolman B., Driessen A. J. Bioenergetics and solute transport in lactococci. Crit Rev Microbiol. 1989;16(6):419–476. doi: 10.3109/10408418909104474. [DOI] [PubMed] [Google Scholar]
  10. Otto R., Lageveen R. G., Veldkamp H., Konings W. N. Lactate efflux-induced electrical potential in membrane vesicles of Streptococcus cremoris. J Bacteriol. 1982 Feb;149(2):733–738. doi: 10.1128/jb.149.2.733-738.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Poolman B., Driessen A. J., Konings W. N. Regulation of solute transport in streptococci by external and internal pH values. Microbiol Rev. 1987 Dec;51(4):498–508. doi: 10.1128/mr.51.4.498-508.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Preston R. L., Schaeffer J. F., Curran P. F. Structure-affinity relationships of substrates for the neutral amino acid transport system in rabbit ileum. J Gen Physiol. 1974 Oct;64(4):443–467. doi: 10.1085/jgp.64.4.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Smid E. J., Plapp R., Konings W. N. Peptide uptake is essential for growth of Lactococcus lactis on the milk protein casein. J Bacteriol. 1989 Nov;171(11):6135–6140. doi: 10.1128/jb.171.11.6135-6140.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Speelmans G., de Vrij W., Konings W. N. Characterization of amino acid transport in membrane vesicles from the thermophilic fermentative bacterium Clostridium fervidus. J Bacteriol. 1989 Jul;171(7):3788–3795. doi: 10.1128/jb.171.7.3788-3795.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Yu C., Yu L., King T. E. Studies on cytochrome oxidase. Interactions of the cytochrome oxidase protein with phospholipids and cytochrome c. J Biol Chem. 1975 Feb 25;250(4):1383–1392. [PubMed] [Google Scholar]
  16. de Vrij W., Driessen A. J., Hellingwerf K. J., Konings W. N. Measurements of the proton motive force generated by cytochrome c oxidase from Bacillus subtilis in proteoliposomes and membrane vesicles. Eur J Biochem. 1986 Apr 15;156(2):431–440. doi: 10.1111/j.1432-1033.1986.tb09600.x. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES