Abstract
An endopeptidase has been purified to homogeneity from a crude cell extract of Lactococcus lactis subsp. cremoris Wg2 by a procedure that includes diethyl-aminoethane-Sephacel chromatography, phenyl-Sepharose chromatography, hydroxylapatite chromatography, and fast protein liquid chromatography over an anion-exchange column and a hydrophobic-interaction column. Gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated a molecular mass of the purified enzyme of 70,000 Da. The endopeptidase can degrade several oligopeptides into various tetra-, tri-, and dipeptides. The endopeptidase has no aminopeptidase, carboxypeptidase, dipeptidase, or tripeptidase activity. It is optimally active at pH 6.0 to 6.5 and in the temperature range of 30 to 38 degrees C. The enzyme is inactivated by the chemical agents 1,10-phenanthroline, ethylenedinitrilotetraacetate, beta-mercaptoethanol, and phenylmethylsulfonyl fluoride and is inhibited by Cu2+ and Zn2+. The ethylenedinitrilotetraacetate- or 1,10-phenanthroline-treated enzyme can be reactivated by Co2+. Immunoblotting with specific antibodies raised against the purified endopeptidase indicated that the enzyme is also present in other Lactococcus spp., as well as in Lactobacillus spp. and Streptococcus salivarius subsp. thermophilus.
Full text
PDF![3593](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27bb/184018/7cef5a897168/aem00065-0203.png)
![3594](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27bb/184018/2e5ea80890a0/aem00065-0204.png)
![3595](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27bb/184018/fa2fa52a22ba/aem00065-0205.png)
![3596](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27bb/184018/ed245357df0e/aem00065-0206.png)
![3597](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27bb/184018/0ee97abc9365/aem00065-0207.png)
![3598](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27bb/184018/845665742d2b/aem00065-0208.png)
![3599](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27bb/184018/7f55c0e9bf94/aem00065-0209.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Atlan D., Laloi P., Portalier R. Isolation and Characterization of Aminopeptidase-Deficient Lactobacillus bulgaricus Mutants. Appl Environ Microbiol. 1989 Jul;55(7):1717–1723. doi: 10.1128/aem.55.7.1717-1723.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bosman B. W., Tan P. S., Konings W. N. Purification and Characterization of a Tripeptidase from Lactococcus lactis subsp. cremoris Wg2. Appl Environ Microbiol. 1990 Jun;56(6):1839–1843. doi: 10.1128/aem.56.6.1839-1843.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Exterkate F. A., de Veer G. J. Partial Isolation and Degradation of Caseins by Cell Wall Proteinase(s) of Streptococcus cremoris HP. Appl Environ Microbiol. 1985 Feb;49(2):328–332. doi: 10.1128/aem.49.2.328-332.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Exterkate F. A., de Veer G. J. Purification and Some Properties of a Membrane-Bound Aminopeptidase A from Streptococcus cremoris. Appl Environ Microbiol. 1987 Mar;53(3):577–583. doi: 10.1128/aem.53.3.577-583.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hugenholtz J., Exterkate F., Konings W. N. The Proteolytic Systems of Streptococcus cremoris: an Immunological Analysis. Appl Environ Microbiol. 1984 Dec;48(6):1105–1110. doi: 10.1128/aem.48.6.1105-1110.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hugenholtz J., van Sinderen D., Kok J., Konings W. N. Cell Wall-Associated Proteases of Streptococcus cremoris Wg2. Appl Environ Microbiol. 1987 Apr;53(4):853–859. doi: 10.1128/aem.53.4.853-859.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kok J. Genetics of the proteolytic system of lactic acid bacteria. FEMS Microbiol Rev. 1990 Sep;7(1-2):15–42. doi: 10.1111/j.1574-6968.1990.tb04877.x. [DOI] [PubMed] [Google Scholar]
- Konings W. N., Poolman B., Driessen A. J. Bioenergetics and solute transport in lactococci. Crit Rev Microbiol. 1989;16(6):419–476. doi: 10.3109/10408418909104474. [DOI] [PubMed] [Google Scholar]
- Kyhse-Andersen J. Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. J Biochem Biophys Methods. 1984 Dec;10(3-4):203–209. doi: 10.1016/0165-022x(84)90040-x. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Laemmli U. K., Favre M. Maturation of the head of bacteriophage T4. I. DNA packaging events. J Mol Biol. 1973 Nov 15;80(4):575–599. doi: 10.1016/0022-2836(73)90198-8. [DOI] [PubMed] [Google Scholar]
- Law B. A., Kolstad J. Proteolytic systems in lactic acid bacteria. Antonie Van Leeuwenhoek. 1983 Sep;49(3):225–245. doi: 10.1007/BF00399500. [DOI] [PubMed] [Google Scholar]
- Law B. A. Peptide utilization by group N streptococci. J Gen Microbiol. 1978 Mar;105(1):113–118. doi: 10.1099/00221287-105-1-113. [DOI] [PubMed] [Google Scholar]
- Matsudaira P. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem. 1987 Jul 25;262(21):10035–10038. [PubMed] [Google Scholar]
- Monnet V., Le Bars D., Gripon J. C. Purification and characterization of a cell wall proteinase from Streptococcus lactis NCDO 763. J Dairy Res. 1987 May;54(2):247–255. doi: 10.1017/s0022029900025383. [DOI] [PubMed] [Google Scholar]
- Neviani E., Boquien C. Y., Monnet V., Thanh L. P., Gripon J. C. Purification and Characterization of an Aminopeptidase from Lactococcus lactis subsp. cremoris AM2. Appl Environ Microbiol. 1989 Sep;55(9):2308–2314. doi: 10.1128/aem.55.9.2308-2314.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smid E. J., Driessen A. J., Konings W. N. Mechanism and energetics of dipeptide transport in membrane vesicles of Lactococcus lactis. J Bacteriol. 1989 Jan;171(1):292–298. doi: 10.1128/jb.171.1.292-298.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smid E. J., Konings W. N. Relationship between utilization of proline and proline-containing peptides and growth of Lactococcus lactis. J Bacteriol. 1990 Sep;172(9):5286–5292. doi: 10.1128/jb.172.9.5286-5292.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smid E. J., Plapp R., Konings W. N. Peptide uptake is essential for growth of Lactococcus lactis on the milk protein casein. J Bacteriol. 1989 Nov;171(11):6135–6140. doi: 10.1128/jb.171.11.6135-6140.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tan P. S., Konings W. N. Purification and Characterization of an Aminopeptidase from Lactococcus lactis subsp. cremoris Wg2. Appl Environ Microbiol. 1990 Feb;56(2):526–532. doi: 10.1128/aem.56.2.526-532.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Visser S., Exterkate F. A., Slangen C. J., de Veer G. J. Comparative Study of Action of Cell Wall Proteinases from Various Strains of Streptococcus cremoris on Bovine alpha(s1)-, beta-, and kappa-Casein. Appl Environ Microbiol. 1986 Nov;52(5):1162–1166. doi: 10.1128/aem.52.5.1162-1166.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wray W., Boulikas T., Wray V. P., Hancock R. Silver staining of proteins in polyacrylamide gels. Anal Biochem. 1981 Nov 15;118(1):197–203. doi: 10.1016/0003-2697(81)90179-2. [DOI] [PubMed] [Google Scholar]
- Yan T. R., Azuma N., Kaminogawa S., Yamauchi K. Purification and Characterization of a Substrate-Size-Recognizing Metalloendopeptidase from Streptococcus cremoris H61. Appl Environ Microbiol. 1987 Oct;53(10):2296–2302. doi: 10.1128/aem.53.10.2296-2302.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yan T. R., Azuma N., Kaminogawa S., Yamauchi K. Purification and characterization of a novel metalloendopeptidase from Streptococcus cremoris H61. A metalloendopeptidase that recognizes the size of its substrate. Eur J Biochem. 1987 Mar 2;163(2):259–265. doi: 10.1111/j.1432-1033.1987.tb10796.x. [DOI] [PubMed] [Google Scholar]
- van Boven A., Tan P. S. T., Konings W. N. Purification and Characterization of a Dipeptidase from Streptococcus cremoris Wg2. Appl Environ Microbiol. 1988 Jan;54(1):43–49. doi: 10.1128/aem.54.1.43-49.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van der Plas J., Hellingwerf K. J., Seijen H. G., Guest J. R., Weiner J. H., Konings W. N. Identification and localization of enzymes of the fumarate reductase and nitrate respiration systems of escherichia coli by crossed immunoelectrophoresis. J Bacteriol. 1983 Feb;153(2):1027–1037. doi: 10.1128/jb.153.2.1027-1037.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- von Heijne G. Patterns of amino acids near signal-sequence cleavage sites. Eur J Biochem. 1983 Jun 1;133(1):17–21. doi: 10.1111/j.1432-1033.1983.tb07424.x. [DOI] [PubMed] [Google Scholar]