Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1989 Mar;55(3):568–572. doi: 10.1128/aem.55.3.568-572.1989

Identification of two distinct Bacillus circulans xylanases by molecular cloning of the genes and expression in Escherichia coli.

R C Yang 1, C R MacKenzie 1, D Bilous 1, S A Narang 1
PMCID: PMC184161  PMID: 2648989

Abstract

Two genes coding for xylanase synthesis in Bacillus circulans were cloned and expressed in Escherichia coli. After digestion of genomic DNA from Bacillus circulans with EcoRI and PstI, the fragments were ligated into the corresponding sites of pUC19 and transformed into Escherichia coli. Restriction enzyme mapping of the two inserts coding for xylanase activity indicated distinctly different nucleotide sequences. Cross-hybridization assays confirmed the absence of sequence homology between the two genes. In vitro transcription-translation assays indicated that the cloned genes encoded for proteins with molecular weights of 22,000 and 59,000. The gene products displayed different substrate specificities. The 22,000-dalton enzyme readily hybrolyzed aspeen, larchwood, and oat spelt xylans, whereas the second was unable to extensively depolymerize oat spelt xylan and resulted in very limited reducing sugar release from any of the xylan substrates tested. Both of the xylanases had isoelectric points of approximately 9.0.

Full text

PDF
568

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Birnboim H. C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. doi: 10.1093/nar/7.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. MacKenzie C. R., Bilous D., Johnson K. G. Purification and characterization of an exoglucanase from Streptomyces flavogriseus. Can J Microbiol. 1984 Sep;30(9):1171–1178. doi: 10.1139/m84-183. [DOI] [PubMed] [Google Scholar]
  3. Mackenzie C. R., Bilous D., Schneider H., Johnson K. G. Induction of Cellulolytic and Xylanolytic Enzyme Systems in Streptomyces spp. Appl Environ Microbiol. 1987 Dec;53(12):2835–2839. doi: 10.1128/aem.53.12.2835-2839.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Moriyama H., Hata Y., Yamaguchi H., Sato M., Shinmyo A., Tanaka N., Okada H., Katsube Y. Crystallization and preliminary X-ray studies of Bacillus pumilus IPO xylanase. J Mol Biol. 1987 Jan 5;193(1):237–238. doi: 10.1016/0022-2836(87)90644-9. [DOI] [PubMed] [Google Scholar]
  5. Rose D. R., Birnbaum G. I., Tan L. U., Saddler J. N. Crystallization and preliminary X-ray diffraction study of a xylanase from Trichoderma harzianum. J Mol Biol. 1987 Apr 20;194(4):755–756. doi: 10.1016/0022-2836(87)90254-3. [DOI] [PubMed] [Google Scholar]
  6. Yang R. C., Mackenzie C. R., Bilous D., Seligy V. L., Narang S. A. Molecular Cloning and Expression of a Xylanase Gene from Bacillus polymyxa in Escherichia coli. Appl Environ Microbiol. 1988 Apr;54(4):1023–1029. doi: 10.1128/aem.54.4.1023-1029.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Zubay G. In vitro synthesis of protein in microbial systems. Annu Rev Genet. 1973;7:267–287. doi: 10.1146/annurev.ge.07.120173.001411. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES