Abstract
Coenzyme F420 has been assayed by high-performance liquid chromatography with fluorimetric detection; this permits quantification of individual coenzyme F420 analogs whilst avoiding the inclusion of interfering material. The total intracellular coenzyme F420 content of Methanosarcina barkeri MS cultivated on methanol and on H2-CO2 and of Methanosarcina mazei S-6 cultured on methanol remained relatively constant during batch growth. The most abundant analogs in M. barkeri were coenzymes F420-2 and F420-4, whilst in M. mazei coenzymes F420-2 and F420-3 predominated. Significant changes in the relative proportions of the coenzyme F420 analogs were noted during batch growth, with coenzymes F420-2 and F420-4 showing opposite responses to each other and the same being also true for coenzymes F420-3 and F420-5. This suggests that an enzyme responsible for transferring pairs of glutamic acid residues may be active. The degradation fragment FO was also detected in cells in late exponential and stationary phase. Coenzyme F420 analogs were present in the culture supernatant of both methanogens, in similar proportions to that in the cells, except for FO which was principally located in the supernatant.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Archer D. B. Detection and quantitation of methanogens by enzyme-linked immunosorbent assay. Appl Environ Microbiol. 1984 Oct;48(4):797–801. doi: 10.1128/aem.48.4.797-801.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Archer D. B., Harris J. E. Methanogenic bacteria and methane production in various habitats. Soc Appl Bacteriol Symp Ser. 1986;13:185–223. [PubMed] [Google Scholar]
- Baresi L., Wolfe R. S. Levels of coenzyme F420, coenzyme M, hydrogenase, and methylcoenzyme M methylreductase in acetate-grown Methanosarcina. Appl Environ Microbiol. 1981 Feb;41(2):388–391. doi: 10.1128/aem.41.2.388-391.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doddema H. J., Vogels G. D. Improved identification of methanogenic bacteria by fluorescence microscopy. Appl Environ Microbiol. 1978 Nov;36(5):752–754. doi: 10.1128/aem.36.5.752-754.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eirich L. D., Vogels G. D., Wolfe R. S. Distribution of coenzyme F420 and properties of its hydrolytic fragments. J Bacteriol. 1979 Oct;140(1):20–27. doi: 10.1128/jb.140.1.20-27.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eirich L. D., Vogels G. D., Wolfe R. S. Proposed structure for coenzyme F420 from Methanobacterium. Biochemistry. 1978 Oct 31;17(22):4583–4593. doi: 10.1021/bi00615a002. [DOI] [PubMed] [Google Scholar]
- Heine-Dobbernack E., Schoberth S. M., Sahm H. Relationship of Intracellular Coenzyme F(420) Content to Growth and Metabolic Activity of Methanobacterium bryantii and Methanosarcina barkeri. Appl Environ Microbiol. 1988 Feb;54(2):454–459. doi: 10.1128/aem.54.2.454-459.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kemp H. A., Archer D. B., Morgan M. R. Enzyme-Linked Immunosorbent Assays for the Specific and Sensitive Quantification of Methanosarcina mazei and Methanobacterium bryantii. Appl Environ Microbiol. 1988 Apr;54(4):1003–1008. doi: 10.1128/aem.54.4.1003-1008.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kiener A., Orme-Johnson W. H., Walsh C. T. Reversible conversion of coenzyme F420 to the 8-OH-AMP and 8-OH-GMP esters, F390-A and F390-G, on oxygen exposure and reestablishment of anaerobiosis in Methanobacterium thermoautotrophicum. Arch Microbiol. 1988;150(3):249–253. doi: 10.1007/BF00407788. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lin X. L., White R. H. Occurrence of coenzyme F420 and its gamma-monoglutamyl derivative in nonmethanogenic archaebacteria. J Bacteriol. 1986 Oct;168(1):444–448. doi: 10.1128/jb.168.1.444-448.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mancuso C. A., Nichols P. D., White D. C. A method for the separation and characterization of archaebacterial signature ether lipids. J Lipid Res. 1986 Jan;27(1):49–56. [PubMed] [Google Scholar]
- Mink R. W., Dugan P. R. Tentative identification of methanogenic bacteria by fluorescence microscopy. Appl Environ Microbiol. 1977 Mar;33(3):713–717. doi: 10.1128/aem.33.3.713-717.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schauer N. L., Ferry J. G. Metabolism of formate in Methanobacterium formicicum. J Bacteriol. 1980 Jun;142(3):800–807. doi: 10.1128/jb.142.3.800-807.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stetter K. O., Lauerer G., Thomm M., Neuner A. Isolation of extremely thermophilic sulfate reducers: evidence for a novel branch of archaebacteria. Science. 1987 May 15;236(4803):822–824. doi: 10.1126/science.236.4803.822. [DOI] [PubMed] [Google Scholar]
- Van Beelen P., Geerts W. J., Pol A., Vogels G. D. Quantification of coenzymes and related compounds from methanogenic bacteria by high-performance liquid chromatography. Anal Biochem. 1983 Jun;131(2):285–290. doi: 10.1016/0003-2697(83)90171-9. [DOI] [PubMed] [Google Scholar]
