Abstract
Thymidine uptake and incorporation by marine bacterial isolates from an upwelling environment were studied. Of 17 isolates each from upwelled and downwelled water, 1 and 6 isolates, respectively, were found to be negative for [3H]thymidine incorporation at a substrate concentration of 19 μM. Strains lacking the ability to take up thymidine were not confined to one genus. The measurable rates of uptake and incorporation by the 34 isolates varied greatly. Studies carried out using starved Vibrio, Pseudomonas, and Cytophaga cells showed that these isolates transported and incorporated thymidine after periods of as long as 5 weeks of nutrient deprivation. This occurred in the absence of any other exogenously supplied nutrients. Overall, these results indicate that not all marine bacteria take up thymidine and that those that do incorporate the nucleoside may do so at very different rates. The assumption that only actively growing or dividing cells incorporate thymidine must be viewed with caution.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bell R. T., Ahlgren G. M., Ahlgren I. Estimating Bacterioplankton Production by Measuring [H]thymidine Incorporation in a Eutrophic Swedish Lake. Appl Environ Microbiol. 1983 Jun;45(6):1709–1721. doi: 10.1128/aem.45.6.1709-1721.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davis C. L., Robb F. T. Maintenance of Different Mannitol Uptake Systems during Starvation in Oxidative and Fermentative Marine Bacteria. Appl Environ Microbiol. 1985 Oct;50(4):743–748. doi: 10.1128/aem.50.4.743-748.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jonas Robert B., Tuttle Jon H., Stoner Daphne L., Ducklow Hugh W. Dual-Label Radioisotope Method for Simultaneously Measuring Bacterial Production and Metabolism in Natural Waters. Appl Environ Microbiol. 1988 Mar;54(3):791–798. doi: 10.1128/aem.54.3.791-798.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Macdonell M. T., Hood M. A. Isolation and characterization of ultramicrobacteria from a gulf coast estuary. Appl Environ Microbiol. 1982 Mar;43(3):566–571. doi: 10.1128/aem.43.3.566-571.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Novitsky J. A., Morita R. Y. Survival of a psychrophilic marine Vibrio under long-term nutrient starvation. Appl Environ Microbiol. 1977 Mar;33(3):635–641. doi: 10.1128/aem.33.3.635-641.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pollard P. C., Moriarty D. J. Validity of the tritiated thymidine method for estimating bacterial growth rates: measurement of isotope dilution during DNA synthesis. Appl Environ Microbiol. 1984 Dec;48(6):1076–1083. doi: 10.1128/aem.48.6.1076-1083.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Riemann B., Søndergaard M. Measurements of diel rates of bacterial secondary production in aquatic environments. Appl Environ Microbiol. 1984 Apr;47(4):632–638. doi: 10.1128/aem.47.4.632-638.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robarts R. D., Wicks R. J., Sephton L. M. Spatial and Temporal Variations in Bacterial Macromolecule Labeling with [methyl-H]Thymidine in a Hypertrophic Lake. Appl Environ Microbiol. 1986 Dec;52(6):1368–1373. doi: 10.1128/aem.52.6.1368-1373.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]