Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1990 May;56(5):1286–1289. doi: 10.1128/aem.56.5.1286-1289.1990

Effects of betaine on enumeration of airborne bacteria.

B Marthi 1, B Lighthart 1
PMCID: PMC184396  PMID: 2339884

Abstract

The osmoprotectant betaine was incorporated into collection fluid and enumeration medium to determine its effects on the colony-forming abilities of airborne bacteria, which were collected from three separate locations: a wastewater treatment plant, the roof of a laboratory building, and an unobstructed farmland. At all locations, addition of 2 to 5 mM betaine caused a significant increase (from 21.6 to 61.3%) in colonial outgrowth, compared with the growth rate of controls without betaine. The presence of betaine in both the collection fluid and the enumeration medium had an additive effect on the colony-forming ability of airborne bacteria compared with the presence of betaine in either one alone. The effect of various betaine concentrations on the enumeration of aerosolized Pseudomonas syringae was determined. Betaine showed a threshold for maximum effect at a concentration of 2 to 5 mM. At higher concentrations (10 to 20 mM), the effects of betaine were negligible or possibly inhibitory. The significance of these results with respect to the development of protocols for monitoring airborne microorganisms, including genetically engineered microorganisms, is discussed.

Full text

PDF
1286

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bissonnette G. K., Jezeski J. J., McFeters G. A., Stuart D. G. Influence of environmental stress on enumeration of indicator bacteria from natural waters. Appl Microbiol. 1975 Feb;29(2):186–194. doi: 10.1128/am.29.2.186-194.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chambers S. T., Kunin C. M. Osmoprotective activity for Escherichia coli in mammalian renal inner medulla and urine. Correlation of glycine and proline betaines and sorbitol with response to osmotic loads. J Clin Invest. 1987 Nov;80(5):1255–1260. doi: 10.1172/JCI113200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Csonka L. N. Proline over-production results in enhanced osmotolerance in Salmonella typhimurium. Mol Gen Genet. 1981;182(1):82–86. doi: 10.1007/BF00422771. [DOI] [PubMed] [Google Scholar]
  4. Csonka L. N. The role of proline in osmoregulation in Salmonella typhimurium and Escherichia coli. Basic Life Sci. 1981;18:533–542. doi: 10.1007/978-1-4684-3980-9_32. [DOI] [PubMed] [Google Scholar]
  5. Hatch M. T., Dimmick R. L. Physiological responses of airborne bacteria to shifts in relative humidity. Bacteriol Rev. 1966 Sep;30(3):597–603. doi: 10.1128/br.30.3.597-603.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hutkins R. W., Ellefson W. L., Kashket E. R. Betaine Transport Imparts Osmotolerance on a Strain of Lactobacillus acidophilus. Appl Environ Microbiol. 1987 Oct;53(10):2275–2281. doi: 10.1128/aem.53.10.2275-2281.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Imhoff J. F., Rodriguez-Valera F. Betaine is the main compatible solute of halophilic eubacteria. J Bacteriol. 1984 Oct;160(1):478–479. doi: 10.1128/jb.160.1.478-479.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Larsen P. I., Sydnes L. K., Landfald B., Strøm A. R. Osmoregulation in Escherichia coli by accumulation of organic osmolytes: betaines, glutamic acid, and trehalose. Arch Microbiol. 1987 Feb;147(1):1–7. doi: 10.1007/BF00492896. [DOI] [PubMed] [Google Scholar]
  9. Le Rudulier D., Strom A. R., Dandekar A. M., Smith L. T., Valentine R. C. Molecular biology of osmoregulation. Science. 1984 Jun 8;224(4653):1064–1068. doi: 10.1126/science.224.4653.1064. [DOI] [PubMed] [Google Scholar]
  10. Munro P. M., Gauthier M. J., Breittmayer V. A., Bongiovanni J. Influence of osmoregulation processes on starvation survival of Escherichia coli in seawater. Appl Environ Microbiol. 1989 Aug;55(8):2017–2024. doi: 10.1128/aem.55.8.2017-2024.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Perroud B., Le Rudulier D. Glycine betaine transport in Escherichia coli: osmotic modulation. J Bacteriol. 1985 Jan;161(1):393–401. doi: 10.1128/jb.161.1.393-401.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Roth W. G., Leckie M. P., Dietzler D. N. Restoration of colony-forming activity in osmotically stressed Escherichia coli by betaine. Appl Environ Microbiol. 1988 Dec;54(12):3142–3146. doi: 10.1128/aem.54.12.3142-3146.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Smith L. T., Smith G. M. An osmoregulated dipeptide in stressed Rhizobium meliloti. J Bacteriol. 1989 Sep;171(9):4714–4717. doi: 10.1128/jb.171.9.4714-4717.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Thurston J. H., Hauhart R. E., Naccarato E. F. Taurine: possible role in osmotic regulation of mammalian heart. Science. 1981 Dec 18;214(4527):1373–1374. doi: 10.1126/science.7313699. [DOI] [PubMed] [Google Scholar]
  15. Webb S. J. The influence of oxygen and inositol on the survival of semidried microorganisms. Can J Microbiol. 1967 Jul;13(7):733–742. doi: 10.1139/m67-097. [DOI] [PubMed] [Google Scholar]
  16. Yancey P. H., Clark M. E., Hand S. C., Bowlus R. D., Somero G. N. Living with water stress: evolution of osmolyte systems. Science. 1982 Sep 24;217(4566):1214–1222. doi: 10.1126/science.7112124. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES