Abstract
Adhesive properties of a cellulolytic, nitrogen-fixing bacterium isolated from a marine shipworm by Waterbury et al. (J. B. Waterbury, C. B. Calloway, and R. D. Turner, Science 221:1401-1403, 1983) are described. 35S-labeled cells of the shipworm bacterium bound preferentially to Whatman no. 1 cellulose filter paper, compared with its binding to other cellulose substrata or substrata lacking cellulose. The ability of the bacteria to bind to Whatman no. 1 filter paper was significantly reduced by glutaraldehyde or heat treatment of cells. Pretreatment of cells with azide, valinomycin, gramicidin-D, bis-hexafluoroacetylacetone (1799), or carbonyl cyanide-p-trifluoromethoxyphenylhydrazone inhibited adhesion activity. Cells pretreated with pronase or trypsin also exhibited reduced binding activity, but chymotrypsin and peptidase had no effect on adhesion activity. Cellodextrins and methyl cellulose 15 inhibited the adhesion of shipworm bacteria to filter paper, whereas glucose, cellobiose, and soluble carboxymethyl cellulose had no significant effect. The divalent cation chelators EDTA and EGTA [ethylene glycol-bis(β-aminoethyl ether)-N,N,N′N′-tetraacetic acid] had little or no effect on adhesive properties of shipworm bacteria. Also, preabsorbing the substratum with extracellular endoglucanase isolated from the shipworm bacterium or 1% bovine serum albumin had no apparent effect on bacterial binding. Low concentrations (0.01%) of sodium dodecyl sulfate solubilized a fraction from whole cells, which appeared to be involved in cellular binding activity. After removal of sodium dodecyl sulfate, several proteins in this fraction associated with intact cells. These cells exhibited up to 50% enhanced binding to filter paper in comparison to cells which had not been exposed to the sodium dodecyl sulfate-solubilized fraction.
Full text
PDF





Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akin D. E., Burdick D., Michaels G. E. Rumen bacterial interrelationships with plant tissue during degradation revealed by transmission electron microscopy. Appl Microbiol. 1974 Jun;27(6):1149–1156. doi: 10.1128/am.27.6.1149-1156.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bar-Shavit Z., Ofek I., Goldman R., Mirelman D., Sharon N. Mannose residues on phagocytes as receptors for the attachment of Escherichia coli and Salmonella typhi. Biochem Biophys Res Commun. 1977 Sep 9;78(1):455–460. doi: 10.1016/0006-291x(77)91276-1. [DOI] [PubMed] [Google Scholar]
- Cheng K. J., Akin D. E., Costerton J. W. Rumen bacteria: interaction with particulate dietary components and response to dietary variation. Fed Proc. 1977 Feb;36(2):193–197. [PubMed] [Google Scholar]
- Friedberg E. C., Bonura T., Love J. D., McMillan S., Radany E. H., Schultz R. A. The repair of DNA damage: recent developments and new insights. J Supramol Struct Cell Biochem. 1981;16(1):91–103. doi: 10.1002/jsscb.1981.380160109. [DOI] [PubMed] [Google Scholar]
- Greene R. V., Freer S. N. Growth characteristics of a novel nitrogen-fixing cellulolytic bacterium. Appl Environ Microbiol. 1986 Nov;52(5):982–986. doi: 10.1128/aem.52.5.982-986.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greene R. V., Griffin H. L., Freer S. N. Purification and characterization of an extracellular endoglucanase from the marine shipworm bacterium. Arch Biochem Biophys. 1988 Nov 15;267(1):334–341. doi: 10.1016/0003-9861(88)90039-2. [DOI] [PubMed] [Google Scholar]
- Imam S. H., Bard R. F., Tosteson T. R. Specificity of marine microbial surface interactions. Appl Environ Microbiol. 1984 Oct;48(4):833–839. doi: 10.1128/aem.48.4.833-839.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Imam S. H., Gould J. M. Adhesion of an Amylolytic Arthrobacter sp. to Starch-Containing Plastic Films. Appl Environ Microbiol. 1990 Apr;56(4):872–876. doi: 10.1128/aem.56.4.872-876.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jarvik J. W., Rosenbaum J. L. Oversized flagellar membrane protein in paralyzed mutants of Chlamydomonas reinhardrii. J Cell Biol. 1980 May;85(2):258–272. doi: 10.1083/jcb.85.2.258. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kudo H., Cheng K. J., Costerton J. W. Electron microscopic study of the methylcellulose-mediated detachment of cellulolytic rumen bacteria from cellulose fibers. Can J Microbiol. 1987 Mar;33(3):267–272. doi: 10.1139/m87-045. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lamed R., Naimark J., Morgenstern E., Bayer E. A. Specialized cell surface structures in cellulolytic bacteria. J Bacteriol. 1987 Aug;169(8):3792–3800. doi: 10.1128/jb.169.8.3792-3800.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lamed R., Setter E., Bayer E. A. Characterization of a cellulose-binding, cellulase-containing complex in Clostridium thermocellum. J Bacteriol. 1983 Nov;156(2):828–836. doi: 10.1128/jb.156.2.828-836.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Latham M. J., Brooker B. E., Pettipher G. L., Harris P. J. Ruminococcus flavefaciens Cell Coat and Adhesion to Cotton Cellulose and to Cell Walls in Leaves of Perennial Ryegrass (Lolium perenne). Appl Environ Microbiol. 1978 Jan;35(1):156–165. doi: 10.1128/aem.35.1.156-165.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Merril C. R., Goldman D., Sedman S. A., Ebert M. H. Ultrasensitive stain for proteins in polyacrylamide gels shows regional variation in cerebrospinal fluid proteins. Science. 1981 Mar 27;211(4489):1437–1438. doi: 10.1126/science.6162199. [DOI] [PubMed] [Google Scholar]
- Rasmussen M. A., White B. A., Hespell R. B. Improved assay for quantitating adherence of ruminal bacteria to cellulose. Appl Environ Microbiol. 1989 Aug;55(8):2089–2091. doi: 10.1128/aem.55.8.2089-2091.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simpson D. L., Rosen S. D., Barondes S. H. Discoidin, a developmentally regulated carbohydrate-binding protein from Dictyostelium discoideum. Purification and characterization. Biochemistry. 1974 Aug 13;13(17):3487–3493. doi: 10.1021/bi00714a011. [DOI] [PubMed] [Google Scholar]
- Stack R. J., Hungate R. E. Effect of 3-Phenylpropanoic Acid on Capsule and Cellulases of Ruminococcus albus 8. Appl Environ Microbiol. 1984 Jul;48(1):218–223. doi: 10.1128/aem.48.1.218-223.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tosteson T. R., Corpe W. A. Enhancement of adhesion of the marine Chlorella vulgaris to glass. Can J Microbiol. 1975 Jul;21(7):1025–1031. doi: 10.1139/m75-152. [DOI] [PubMed] [Google Scholar]
- Waterbury J. B., Calloway C. B., Turner R. D. A cellulolytic nitrogen-fixing bacterium cultured from the gland of deshayes in shipworms (bivalvia: teredinidae). Science. 1983 Sep 30;221(4618):1401–1403. doi: 10.1126/science.221.4618.1401. [DOI] [PubMed] [Google Scholar]

