Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1990 Jul;56(7):2120–2124. doi: 10.1128/aem.56.7.2120-2124.1990

Acid Tolerance of Leuconostoc mesenteroides and Lactobacillus plantarum

L C McDonald 1, H P Fleming 1,*, H M Hassan 1
PMCID: PMC184570  PMID: 16348238

Abstract

In this study, we determined the internal cellular pH response of Leuconostoc mesenteroides and Lactobacillus plantarum to the external pH created by the microorganisms themselves or by lactic or acetic acids and their salts added to the growth medium. Growth of Leuconostoc mesenteroides stopped when its internal pH reached 5.4 to 5.7, and growth of L. plantarum stopped when its internal pH reached 4.6 to 4.8. Variation in growth medium composition or pH did not alter the growth-limiting internal pH reached by these microorganisms. L. plantarum maintained its pH gradient in the presence of either 160 mM sodium acetate or sodium lactate down to an external pH of 3.0 with either acid. In contrast, the ΔpH of Leuconostoc mesenteroides was zero at pH 4.0 with acetate and 5.0 with lactate. No differences were found between d-(−)- and l-(+)-lactic acid for the limiting internal pH for growth of either microorganism. The comparatively low growth-limiting internal pH and ability to maintain a pH gradient at high organic acid concentration may contribute to the ability of L. plantarum to terminate vegetable fermentations.

Full text

PDF
2120

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baronofsky J. J., Schreurs W. J., Kashket E. R. Uncoupling by Acetic Acid Limits Growth of and Acetogenesis by Clostridium thermoaceticum. Appl Environ Microbiol. 1984 Dec;48(6):1134–1139. doi: 10.1128/aem.48.6.1134-1139.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bender G. R., Marquis R. E. Membrane ATPases and acid tolerance of Actinomyces viscosus and Lactobacillus casei. Appl Environ Microbiol. 1987 Sep;53(9):2124–2128. doi: 10.1128/aem.53.9.2124-2128.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Booth I. R. Regulation of cytoplasmic pH in bacteria. Microbiol Rev. 1985 Dec;49(4):359–378. doi: 10.1128/mr.49.4.359-378.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Freese E., Sheu C. W., Galliers E. Function of lipophilic acids as antimicrobial food additives. Nature. 1973 Feb 2;241(5388):321–325. doi: 10.1038/241321a0. [DOI] [PubMed] [Google Scholar]
  5. Goodwin S., Zeikus J. G. Physiological adaptations of anaerobic bacteria to low pH: metabolic control of proton motive force in Sarcina ventriculi. J Bacteriol. 1987 May;169(5):2150–2157. doi: 10.1128/jb.169.5.2150-2157.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Huang L., Forsberg C. W., Gibbins L. N. Influence of External pH and Fermentation Products on Clostridium acetobutylicum Intracellular pH and Cellular Distribution of Fermentation Products. Appl Environ Microbiol. 1986 Jun;51(6):1230–1234. doi: 10.1128/aem.51.6.1230-1234.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hunter D. R., Segel I. H. Effect of weak acids on amino acid transport by Penicillium chrysogenum: evidence for a proton or charge gradient as the driving force. J Bacteriol. 1973 Mar;113(3):1184–1192. doi: 10.1128/jb.113.3.1184-1192.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kashket S., Kashket E. R. Dissipation of the proton motive force in oral streptococci by fluoride. Infect Immun. 1985 Apr;48(1):19–22. doi: 10.1128/iai.48.1.19-22.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kobayashi H. A proton-translocating ATPase regulates pH of the bacterial cytoplasm. J Biol Chem. 1985 Jan 10;260(1):72–76. [PubMed] [Google Scholar]
  10. Kobayashi H., Murakami N., Unemoto T. Regulation of the cytoplasmic pH in Streptococcus faecalis. J Biol Chem. 1982 Nov 25;257(22):13246–13252. [PubMed] [Google Scholar]
  11. Levine A. S., Fellers C. R. Action of Acetic Acid on Food Spoilage Microörganisms. J Bacteriol. 1940 May;39(5):499–515. doi: 10.1128/jb.39.5.499-515.1940. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. McDonald L. C., McFeeters R. F., Daeschel M. A., Fleming H. P. A differential medium for the enumeration of homofermentative and heterofermentative lactic Acid bacteria. Appl Environ Microbiol. 1987 Jun;53(6):1382–1384. doi: 10.1128/aem.53.6.1382-1384.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Raven J. A., Smith F. A. The evolution of chemiosmotic energy coupling. J Theor Biol. 1976 Apr;57(2):301–312. doi: 10.1016/0022-5193(76)90003-5. [DOI] [PubMed] [Google Scholar]
  14. Rottenberg H. The measurement of membrane potential and deltapH in cells, organelles, and vesicles. Methods Enzymol. 1979;55:547–569. doi: 10.1016/0076-6879(79)55066-6. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES