Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1983 Jan;23(1):98–104. doi: 10.1128/aac.23.1.98

Binding of monobactams to penicillin-binding proteins of Escherichia coli and Staphylococcus aureus: relation to antibacterial activity.

N H Georgopapadakou, S A Smith, C M Cimarusti, R B Sykes
PMCID: PMC184624  PMID: 6338822

Abstract

A series of novel monocyclic beta-lactam antibiotics having side chains related to penicillin, piperacillin, azlocillin, and cefotaxime were examined with respect to binding to essential penicillin-binding proteins (PBPs) in Escherichia coli and Staphylococcus aureus. In the penicillin series, there was poor binding to all essential PBPs of E. coli (greater than 100 micrograms/ml) but good binding to PBPs 1, 2, and 3 of S. aureus (approximately 1 microgram/ml). In the piperacillin and azlocillin series, there was good binding to PBP 3 of E. coli (0.1 microgram/ml) and PBPs 1, 2, and 3 of S. aureus (approximately 1 microgram/ml). In the cefotaxime series, there was generally good binding to PBP 3 of E. coli (0.1 micrograms/ml) but poor binding to PBPs 1, 2, and 3 of S. aureus (greater than or equal to 100 micrograms/ml). With a few exceptions in the cefotaxime series, antibacterial activity paralleled essential PBP binding. Binding studies with radioactively labeled compounds revealed no additional essential monobactam-binding proteins in the two organisms. The studies suggest that monobactams are intrinsically active against both gram-positive and gram-negative bacteria; the activity spectrum of a given monobactam is determined by the binding to essential PBPs, which in turn is determined by the nature of the substituents on the beta-lactam nucleus.

Full text

PDF
98

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blumberg P. M., Strominger J. L. Interaction of penicillin with the bacterial cell: penicillin-binding proteins and penicillin-sensitive enzymes. Bacteriol Rev. 1974 Sep;38(3):291–335. doi: 10.1128/br.38.3.291-335.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Botta G. A., Park J. T. Evidence for involvement of penicillin-binding protein 3 in murein synthesis during septation but not during cell elongation. J Bacteriol. 1981 Jan;145(1):333–340. doi: 10.1128/jb.145.1.333-340.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Breuer H., Cimarusti C. M., Denzel T., Koster W. H., Slusarchyk W. A., Treuner U. D. Monobactams--structure-activity relationships leading to SQ 26,776. J Antimicrob Chemother. 1981 Dec;8 (Suppl E):21–28. doi: 10.1093/jac/8.suppl_e.21. [DOI] [PubMed] [Google Scholar]
  4. Bush K., Freudenberger J. S., Sykes R. B. Interaction of azthreonam and related monobactams with beta-lactamases from gram-negative bacteria. Antimicrob Agents Chemother. 1982 Sep;22(3):414–420. doi: 10.1128/aac.22.3.414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Curtis N. A., Ross G. W., Boulton M. G. Effect of 7-alpha methoxy substitution of cephalosporins upon their affinity for the penicillin-binding proteins of E. coli K12. Comparison with antibacterial activity and inhibition of membrane bound model transpeptidase activity. J Antimicrob Chemother. 1979 Jul;5(4):391–398. doi: 10.1093/jac/5.4.391. [DOI] [PubMed] [Google Scholar]
  6. Frère J. M., Ghuysen J. M., Perkins H. R., Nieto M. Molecular weight and amino acid composition of the exocellular DD-carboxypeptidase-transpeptidase of Streptomyces R61. Biochem J. 1973 Nov;135(3):463–468. doi: 10.1042/bj1350463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Georgopapadakou N. H., Liu F. Y. Binding of beta-lactam antibiotics to penicillin-binding proteins of Staphylococcus aureus and Streptococcus faecalis: relation to antibacterial activity. Antimicrob Agents Chemother. 1980 Nov;18(5):834–836. doi: 10.1128/aac.18.5.834. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Georgopapadakou N. H., Liu F. Y. Penicillin-binding proteins in bacteria. Antimicrob Agents Chemother. 1980 Jul;18(1):148–157. doi: 10.1128/aac.18.1.148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Georgopapadakou N. H., Smith S. A., Cimarusti C. M. Interaction between monobactams and Streptomyces R61 DD-carboxypeptidase. Eur J Biochem. 1982 Jun;124(3):507–512. doi: 10.1111/j.1432-1033.1982.tb06622.x. [DOI] [PubMed] [Google Scholar]
  10. Georgopapadakou N. H., Smith S. A., Sykes R. B. Mode of action of azthreonam. Antimicrob Agents Chemother. 1982 Jun;21(6):950–956. doi: 10.1128/aac.21.6.950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Imada A., Kitano K., Kintaka K., Muroi M., Asai M. Sulfazecin and isosulfazecin, novel beta-lactam antibiotics of bacterial origin. Nature. 1981 Feb 12;289(5798):590–591. doi: 10.1038/289590a0. [DOI] [PubMed] [Google Scholar]
  12. Ishino F., Matsuhashi M. Peptidoglycan synthetic enzyme activities of highly purified penicillin-binding protein 3 in Escherichia coli: a septum-forming reaction sequence. Biochem Biophys Res Commun. 1981 Aug 14;101(3):905–911. doi: 10.1016/0006-291x(81)91835-0. [DOI] [PubMed] [Google Scholar]
  13. Kozarich J. W., Strominger J. L. A membrane enzyme from Staphylococcus aureus which catalyzes transpeptidase, carboxypeptidase, and penicillinase activities. J Biol Chem. 1978 Feb 25;253(4):1272–1278. [PubMed] [Google Scholar]
  14. Nikaido H., Nakae T. The outer membrane of Gram-negative bacteria. Adv Microb Physiol. 1979;20:163–250. doi: 10.1016/s0065-2911(08)60208-8. [DOI] [PubMed] [Google Scholar]
  15. Richmond M. H., Clark D. C., Wotton S. Indirect method for assessing the penetration of beta-lactamase-nonsusceptible penicillins and cephalosporins in Escherichia coli strains. Antimicrob Agents Chemother. 1976 Aug;10(2):215–218. doi: 10.1128/aac.10.2.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Spratt B. G. Distinct penicillin binding proteins involved in the division, elongation, and shape of Escherichia coli K12. Proc Natl Acad Sci U S A. 1975 Aug;72(8):2999–3003. doi: 10.1073/pnas.72.8.2999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Spratt B. G. The mechanism of action of penicillin. Sci Prog. 1978 Spring;65(257):101–128. [PubMed] [Google Scholar]
  18. Suzuki H., Nishimura Y., Hirota Y. On the process of cellular division in Escherichia coli: a series of mutants of E. coli altered in the penicillin-binding proteins. Proc Natl Acad Sci U S A. 1978 Feb;75(2):664–668. doi: 10.1073/pnas.75.2.664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sykes R. B., Bonner D. P., Bush K., Georgopapadakou N. H. Azthreonam (SQ 26,776), a synthetic monobactam specifically active against aerobic gram-negative bacteria. Antimicrob Agents Chemother. 1982 Jan;21(1):85–92. doi: 10.1128/aac.21.1.85. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sykes R. B., Cimarusti C. M., Bonner D. P., Bush K., Floyd D. M., Georgopapadakou N. H., Koster W. M., Liu W. C., Parker W. L., Principe P. A. Monocyclic beta-lactam antibiotics produced by bacteria. Nature. 1981 Jun 11;291(5815):489–491. doi: 10.1038/291489a0. [DOI] [PubMed] [Google Scholar]
  21. Tamura T., Imae Y., Strominger J. L. Purification to homogeneity and properties of two D-alanine carboxypeptidases I From Escherichia coli. J Biol Chem. 1976 Jan 25;251(2):414–423. [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES