Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1983 Apr;23(4):598–602. doi: 10.1128/aac.23.4.598

Sulfur metabolism in the biosynthesis of monobactams.

J O'Sullivan, M L Souser, C C Kao, C A Aklonis
PMCID: PMC184708  PMID: 6859838

Abstract

We studied the biosynthesis of monobactams with respect to sulfur metabolism in Chromobacterium violaceum, Acetobacter sp., and Agrobacterium radiobacter. All three organisms used inorganic sulfur for monobactam production. When sulfur-containing amino acids were assayed as a source of sulfur for monobactam production, C. violaceum used cystine but not cysteine or methionine, Acetobacter sp. used all three compounds, and A. radiobacter used none. 35S from cysteine, methionine, and sodium sulfate was incorporated into monobactam by Acetobacter sp. Cell-free extracts of all three organisms were shown to possess cysteine desulfhydrase activity. In Acetobacter sp., this activity was constitutive, required pyridoxal phosphate, and had a pH optimum of 9.5. Extensive loss of 3H from L-[3-3H]cysteine was seen upon desulfhydration; no evidence of serine formation was found. Active sulfate was formed in cell-free extracts of A. radiobacter, and, since inorganic sulfur was used by all three organisms, it is likely that the sulfamate group of monobactams is produced via active sulfate.

Full text

PDF
598

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BREITENBACH J. W., DERKOSCH J., WESSELY F. Energetics of peptide formation. Nature. 1952 May 31;169(4309):922–922. doi: 10.1038/169922a0. [DOI] [PubMed] [Google Scholar]
  2. HEILMANN J., BARROLLIER J., WATZKE E. Beitrag zur Aminosäurebestimmung auf Papierchromatogrammen. Hoppe Seylers Z Physiol Chem. 1957;309(4-6):219–220. [PubMed] [Google Scholar]
  3. Imada A., Kitano K., Kintaka K., Muroi M., Asai M. Sulfazecin and isosulfazecin, novel beta-lactam antibiotics of bacterial origin. Nature. 1981 Feb 12;289(5798):590–591. doi: 10.1038/289590a0. [DOI] [PubMed] [Google Scholar]
  4. Laskey R. A., Mills A. D. Quantitative film detection of 3H and 14C in polyacrylamide gels by fluorography. Eur J Biochem. 1975 Aug 15;56(2):335–341. doi: 10.1111/j.1432-1033.1975.tb02238.x. [DOI] [PubMed] [Google Scholar]
  5. O'Sullivan J., Bleaney R. C., Huddleston J. A., Abraham E. P. Incorporation of 3H from delta-(L-alpha-amino (4,5-3H)adipyl)-L-cysteinyl-D-(4,4-3H)valine into isopenicillin N. Biochem J. 1979 Nov 15;184(2):421–426. doi: 10.1042/bj1840421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. O'Sullivan J., Gillum A. M., Aklonis C. A., Souser M. L., Sykes R. B. Biosynthesis of monobactam compounds: origin of the carbon atoms in the beta-lactam ring. Antimicrob Agents Chemother. 1982 Apr;21(4):558–564. doi: 10.1128/aac.21.4.558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. POWELL E. O., ERRINGTON F. P. Generation times of individual bacteria: some corroborative measurements. J Gen Microbiol. 1963 May;31:315–327. doi: 10.1099/00221287-31-2-315. [DOI] [PubMed] [Google Scholar]
  8. Parker W. L., Rathnum M. L. EM5400, a family of monobactam antibiotics produced by Agrobacterium radiobacter. II. Isolation and structure determination. J Antibiot (Tokyo) 1982 Mar;35(3):300–305. doi: 10.7164/antibiotics.35.300. [DOI] [PubMed] [Google Scholar]
  9. SIEGEL L. M. A DIRECT MICRODETERMINATION FOR SULFIDE. Anal Biochem. 1965 Apr;11:126–132. doi: 10.1016/0003-2697(65)90051-5. [DOI] [PubMed] [Google Scholar]
  10. Sykes R. B., Cimarusti C. M., Bonner D. P., Bush K., Floyd D. M., Georgopapadakou N. H., Koster W. M., Liu W. C., Parker W. L., Principe P. A. Monocyclic beta-lactam antibiotics produced by bacteria. Nature. 1981 Jun 11;291(5815):489–491. doi: 10.1038/291489a0. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES