Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1983 May;23(5):742–749. doi: 10.1128/aac.23.5.742

Activity of AT-2266 compared with those of norfloxacin, pipemidic acid, nalidixic acid, and gentamicin against various experimental infections in mice.

S Nakamura, K Nakata, H Katae, A Minami, S Kashimoto, J Yamagishi, Y Takase, M Shimizu
PMCID: PMC184805  PMID: 6223579

Abstract

AT-2266 (1-ethyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl)-1, 8-naphthyridine-3-carboxylic acid) showed marked activity in vivo when administered orally to mice bearing systemic, pulmonary, dermal, or urinary tract infections due to variety of organisms. The activity of AT-2266 was uniformly higher than those of norfloxacin, pipemidic acid, and nalidixic acid against all of the infections. The activity of AT-2266 administered orally was almost comparable to that of gentamicin administered subcutaneously against urinary tract infections due to gram-negative organisms but was generally lower against other infections. AT-2266 exhibited significant activity against infections due to gentamicin-resistant and nalidixic acid-resistant organisms.

Full text

PDF
742

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Hirai K., Ito A., Abe Y., Suzue S., Irikura T., Inoue M., Mitsuhashi S. Comparative activities of AM-715 and pipemidic and nalidixic acids against experimentally induced systemic and urinary tract infections. Antimicrob Agents Chemother. 1981 Jan;19(1):188–189. doi: 10.1128/aac.19.1.188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ito A., Hirai K., Inoue M., Koga H., Suzue S., Irikura T., Mitsuhashi S. In vitro antibacterial activity of AM-715, a new nalidixic acid analog. Antimicrob Agents Chemother. 1980 Feb;17(2):103–108. doi: 10.1128/aac.17.2.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. King A., Warren C., Shannon K., Phillips I. In vitro antibacterial activity of norfloxacin (MK-0366). Antimicrob Agents Chemother. 1982 Apr;21(4):604–607. doi: 10.1128/aac.21.4.604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Koga H., Itoh A., Murayama S., Suzue S., Irikura T. Structure-activity relationships of antibacterial 6,7- and 7,8-disubstituted 1-alkyl-1,4-dihydro-4-oxoquinoline-3-carboxylic acids. J Med Chem. 1980 Dec;23(12):1358–1363. doi: 10.1021/jm00186a014. [DOI] [PubMed] [Google Scholar]
  5. Matsumoto J., Minami S. Pyrido(2,3-d)pyrimidine antibacterial agents. 3. 8-Alkyl- and 8-vinyl-5,8-dihydro-5-oxo-2-(1-piperazinyl)pyrido(2,3-d)pyrimidine-6-carboxylic acids and their derivatives. J Med Chem. 1975 Jan;18(1):74–79. doi: 10.1021/jm00235a017. [DOI] [PubMed] [Google Scholar]
  6. Neu H. C., Labthavikul P. In vitro activity of norfloxacin, a quinolinecarboxylic acid, compared with that of beta-lactams, aminoglycosides, and trimethoprim. Antimicrob Agents Chemother. 1982 Jul;22(1):23–27. doi: 10.1128/aac.22.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Shimizu M., Takase Y., Nakamura S., Katae H., Minami A. Pipemidic acid, a new antibacterial agent active against Pseudomonas aeruginosa: in vitro properties. Antimicrob Agents Chemother. 1975 Aug;8(2):132–138. doi: 10.1128/aac.8.2.132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Shimizu M., Takdase Y., Nakamura S., Katae H., Minami A. Pipemidic acid: its activities against various experimental infections. Antimicrob Agents Chemother. 1976 Apr;9(4):569–574. doi: 10.1128/aac.9.4.569. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES