Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1990 Sep;56(9):2755–2760. doi: 10.1128/aem.56.9.2755-2760.1990

Inactivation of human immunodeficiency virus type 1 in blood samples stored as high-salt lysates.

J W Zolg 1, R S Lanciotti 1, M Wendlinger 1, W A Meyer 3rd 1
PMCID: PMC184838  PMID: 2275531

Abstract

Blood samples to be tested for the presence of parasite DNA by using specific DNA probes are routinely stored in our laboratory as high-salt lysates (HSL). To safeguard against the risk of accidental infection with etiological agents such as the human immunodeficiency virus type 1 (HIV-1) while manipulating large numbers of blood samples in preparation for DNA probing, we determined the residual infectivity of HIV-1 after exposure to HSL components. Both high-titer virus stocks or provirus-carrying cells, suspended either in tissue culture medium or freshly drawn blood, were completely inactivated upon contact with the HSL components. This was verified by the absence of any detectable HIV-1-specific antigen in the supernatants of long-term cultures and the absence of virus-specific DNA fragments after amplification by polymerase chain reaction with DNA from such cultures as target DNA. These results support the conclusion that the virus is in fact completely inactivated by contact with the HSL components, rendering blood specimens stored as HSL noninfectious in regard to HIV-1.

Full text

PDF
2755

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Casareale D., Stevenson M., Sakai K., Volsky D. J. A human T-cell line resistant to cytopathic effects of the human immunodeficiency virus (HIV). Virology. 1987 Jan;156(1):40–49. doi: 10.1016/0042-6822(87)90434-x. [DOI] [PubMed] [Google Scholar]
  2. Folks T. M., Powell D., Lightfoote M., Koenig S., Fauci A. S., Benn S., Rabson A., Daugherty D., Gendelman H. E., Hoggan M. D. Biological and biochemical characterization of a cloned Leu-3- cell surviving infection with the acquired immune deficiency syndrome retrovirus. J Exp Med. 1986 Jul 1;164(1):280–290. doi: 10.1084/jem.164.1.280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Lanar D. E., McLaughlin G. L., Wirth D. F., Barker R. J., Zolg J. W., Chulay J. D. Comparison of thick films, in vitro culture and DNA hybridization probes for detecting Plasmodium falciparum malaria. Am J Trop Med Hyg. 1989 Jan;40(1):3–6. doi: 10.4269/ajtmh.1989.40.3. [DOI] [PubMed] [Google Scholar]
  4. Maddon P. J., Dalgleish A. G., McDougal J. S., Clapham P. R., Weiss R. A., Axel R. The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain. Cell. 1986 Nov 7;47(3):333–348. doi: 10.1016/0092-8674(86)90590-8. [DOI] [PubMed] [Google Scholar]
  5. Matthews J. A., Kricka L. J. Analytical strategies for the use of DNA probes. Anal Biochem. 1988 Feb 15;169(1):1–25. doi: 10.1016/0003-2697(88)90251-5. [DOI] [PubMed] [Google Scholar]
  6. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983 Dec 16;65(1-2):55–63. doi: 10.1016/0022-1759(83)90303-4. [DOI] [PubMed] [Google Scholar]
  7. Mullis K., Faloona F., Scharf S., Saiki R., Horn G., Erlich H. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol. 1986;51(Pt 1):263–273. doi: 10.1101/sqb.1986.051.01.032. [DOI] [PubMed] [Google Scholar]
  8. Ou C. Y., Kwok S., Mitchell S. W., Mack D. H., Sninsky J. J., Krebs J. W., Feorino P., Warfield D., Schochetman G. DNA amplification for direct detection of HIV-1 in DNA of peripheral blood mononuclear cells. Science. 1988 Jan 15;239(4837):295–297. doi: 10.1126/science.3336784. [DOI] [PubMed] [Google Scholar]
  9. Tunis M. J., Hearst J. E. On the hydration of DNA. I. Preferential hydration and stability of DNA in concentrated trifluoroacetate solution. Biopolymers. 1968;6(9):1325–1344. doi: 10.1002/bip.1968.360060908. [DOI] [PubMed] [Google Scholar]
  10. Zolg J. W., Chen G. X., Plitt J. R. Detection of pyrimethamine resistance in Plasmodium falciparum by mutation-specific polymerase chain reaction. Mol Biochem Parasitol. 1990 Mar;39(2):257–265. doi: 10.1016/0166-6851(90)90064-s. [DOI] [PubMed] [Google Scholar]
  11. Zolg J. W., Plitt J. R., Chen G. X., Palmer S. Point mutations in the dihydrofolate reductase-thymidylate synthase gene as the molecular basis for pyrimethamine resistance in Plasmodium falciparum. Mol Biochem Parasitol. 1989 Oct;36(3):253–262. doi: 10.1016/0166-6851(89)90173-4. [DOI] [PubMed] [Google Scholar]
  12. Zolg J. W., Scott E. D., Wendlinger M. High salt lysates: a simple method to store blood samples without refrigeration for subsequent use with DNA probes. Am J Trop Med Hyg. 1988 Jul;39(1):33–40. doi: 10.4269/ajtmh.1988.39.33. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES