Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1990 Sep;56(9):2941–2943. doi: 10.1128/aem.56.9.2941-2943.1990

Characterization of thermostable cyclodextrinase from Clostridium thermohydrosulfuricum 39E.

B C Saha 1, J G Zeikus 1
PMCID: PMC184873  PMID: 2275540

Abstract

Clostridium thermohydrosulfuricum 39E produced a cell-bound cyclodextrin (CD)-degrading enzyme (cyclodextrinase). It was partially purified 205-fold (specific activity, 14.5 U/mg of protein) by solubilizing with Triton X-100, ammonium sulfate treatment, and DEAE-Sepharose CL-6B column chromatography. The enzyme activity was found to be stable at pH 5.5 and 60 degrees C and optimally active at pH 6.0 and 65 degrees C. The enzyme preparation hydrolyzed CDs, with alpha-CD greater than beta-CD greater than gamma-CD, and displayed a putative multiple attack pattern. The enzyme activity was inhibited by p-chloromercuribenzoate but not by N-bromosuccinimide.

Full text

PDF
2941

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe J. I., Nakajima K., Nagano H., Hizukuri S., Obata K. Properties of the raw-starch digesting amylase of Aspergillus sp. K-27: a synergistic action of glucoamylase and alpha-amylase. Carbohydr Res. 1988 Apr 1;175(1):85–92. doi: 10.1016/0008-6215(88)80158-7. [DOI] [PubMed] [Google Scholar]
  2. Bender H. A bacterial glucoamylase degrading cyclodextrins. Partial purification and properties of the enzyme from a Flavobacterium species. Eur J Biochem. 1981 Apr;115(2):287–291. doi: 10.1111/j.1432-1033.1981.tb05236.x. [DOI] [PubMed] [Google Scholar]
  3. De Mot R., Verachtert H. Purification and Characterization of Extracellular Amylolytic Enzymes from the Yeast Filobasidium capsuligenum. Appl Environ Microbiol. 1985 Dec;50(6):1474–1482. doi: 10.1128/aem.50.6.1474-1482.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. De Mot R., Verachtert H. Secretion of alpha-amylase and multiple forms of glucoamylase by the yeast Trichosporon pullulans. Can J Microbiol. 1986 Jan;32(1):47–51. doi: 10.1139/m86-009. [DOI] [PubMed] [Google Scholar]
  5. DePinto J. A., Campbell L. L. Purification and properties of the cyclodextrinase of Bacillus macerans. Biochemistry. 1968 Jan;7(1):121–125. doi: 10.1021/bi00841a016. [DOI] [PubMed] [Google Scholar]
  6. Hyun H. H., Zeikus J. G. General Biochemical Characterization of Thermostable Pullulanase and Glucoamylase from Clostridium thermohydrosulfuricum. Appl Environ Microbiol. 1985 May;49(5):1168–1173. doi: 10.1128/aem.49.5.1168-1173.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hyun H. H., Zeikus J. G. Regulation and genetic enhancement of glucoamylase and pullulanase production in Clostridium thermohydrosulfuricum. J Bacteriol. 1985 Dec;164(3):1146–1152. doi: 10.1128/jb.164.3.1146-1152.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kato K., Sugimoto T., Amemura A., Harada T. A Pseudomonas intracellular amylase with high activity on maltodextrins and cyclodextrins. Biochim Biophys Acta. 1975 May 23;391(1):96–108. doi: 10.1016/0005-2744(75)90156-4. [DOI] [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. Marshall J. J., Miwa I. Kinetic difference between hydrolyses of gamma-cyclodextrin by human salivary and pancreatic alpha-amylases. Biochim Biophys Acta. 1981 Sep 15;661(1):142–147. doi: 10.1016/0005-2744(81)90093-0. [DOI] [PubMed] [Google Scholar]
  11. Mathupala S., Saha B. C., Zeikus J. G. Substrate competition and specificity at the active site of amylopullulanase from Clostridium thermohydrosulfuricum. Biochem Biophys Res Commun. 1990 Jan 15;166(1):126–132. doi: 10.1016/0006-291x(90)91920-n. [DOI] [PubMed] [Google Scholar]
  12. Moseley M. H., Keay L. Purification and characterization of the amylase of B. subtilis NRRL B3411. Biotechnol Bioeng. 1970 Mar;12(2):251–271. doi: 10.1002/bit.260120207. [DOI] [PubMed] [Google Scholar]
  13. Onishi M. Studies of the interaction of substrate analogues with bacterial liquefying alpha-amylase by means of spectrophotometry and steady state kinetics. J Biochem. 1971 Jan;69(1):181–189. doi: 10.1093/oxfordjournals.jbchem.a129446. [DOI] [PubMed] [Google Scholar]
  14. Saha B. C., Mathupala S. P., Zeikus J. G. Purification and characterization of a highly thermostable novel pullulanase from Clostridium thermohydrosulfuricum. Biochem J. 1988 Jun 1;252(2):343–348. doi: 10.1042/bj2520343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Shen G. J., Saha B. C., Lee Y. E., Bhatnagar L., Zeikus J. G. Purification and characterization of a novel thermostable beta-amylase from Clostridium thermosulphurogenes. Biochem J. 1988 Sep 15;254(3):835–840. doi: 10.1042/bj2540835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Suetsugu N., Koyama S., Takeo K., Kuge T. Kinetic studies on the hydrolyses of alpha-, beta-, and gamma-cyclodextrins by Taka-amylase A. J Biochem. 1974 Jul;76(1):57–63. doi: 10.1093/oxfordjournals.jbchem.a130559. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES