Abstract
One form of commercial application of microorganisms, including genetically engineered microorganisms is as an aerosol. To study the effect of aerosol-induced stress on bacterial survival, nonrecombinant spontaneous antibiotic-resistant mutants of four organisms, Enterobacter cloacae, Erwinia herbicola, Klebsiella planticola, and Pseudomonas syringae, were sprayed in separate experiments in a greenhouse. Samples were collected over a distance of 15 m from the spray site for enumeration. Spores of Bacillus subtilis were used as tracers to estimate the effects of dilution on changes in population over distance. Viable counts of P. syringae, Enterobacter cloacae, and K. planticola decreased significantly over a distance of 15 m. Erwinia herbicola showed no significant decline in counts over the same distance. The degree of survival of P. syringae during aerosolization was dependent on ambient environmental conditions (i.e., temperature, relative humidity), droplet size of the aerosol, and prior preparative conditions. Survival was greatest at high relative humidities (70 to 80%) and low temperatures (12 degrees C). Survival was reduced when small droplet sizes were used. The process of washing the cells prior to aerosolization also caused a reduction in their survival. Results from these experiments will be useful in developing sound methodologies to optimize enumeration and for predicting the downwind dispersal of airborne microorganisms, including genetically engineered microorganisms.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BEEBE J. M., PIRSCH G. W. Response of air-borne species of Pasteurella to artificial radiation simulating sunlight under different conditions of relative humidity. Appl Microbiol. 1958 Mar;6(2):127–138. doi: 10.1128/am.6.2.127-138.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benbough J. E. Death mechanisms in airborne Escherichia coli. J Gen Microbiol. 1967 Jun;47(3):325–333. doi: 10.1099/00221287-47-3-325. [DOI] [PubMed] [Google Scholar]
- Cox C. S. Aerosol survival of Pasteurella tularensis disseminated from the wet and dry states. Appl Microbiol. 1971 Mar;21(3):482–486. doi: 10.1128/am.21.3.482-486.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cox C. S., Baldwin F. The toxic effect of oxygen upon the aerosol survival of Escherichia coli B. J Gen Microbiol. 1967 Oct;49(1):115–117. doi: 10.1099/00221287-49-1-115. [DOI] [PubMed] [Google Scholar]
- Cox C. S., Baldwin F. The use of phage to study causes of loss of viability of Escherichia coli in aerosols. J Gen Microbiol. 1966 Jul;44(1):15–22. doi: 10.1099/00221287-44-1-15. [DOI] [PubMed] [Google Scholar]
- Cox C. S. The aerosol survival and cause of death of Escherichia coli K12. J Gen Microbiol. 1968 Dec;54(2):169–175. doi: 10.1099/00221287-54-2-169. [DOI] [PubMed] [Google Scholar]
- Cox C. S. The cause of loss of viability of airborne Escherichia coli K12. J Gen Microbiol. 1969 Jul;57(1):77–80. doi: 10.1099/00221287-57-1-77. [DOI] [PubMed] [Google Scholar]
- Dorsey E. L., Berendt R. F., Neff E. L., Jr Effect of sodium fluorescein and plating medium on recovery of irradiated Escherichia coli and Serratia marcescens from aerosols. Appl Microbiol. 1970 Nov;20(5):834–838. doi: 10.21236/ad0716697. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ehrlich R., Miller S., Walker R. L. Relationship between atmospheric temperature and survival of airborne bacteria. Appl Microbiol. 1970 Feb;19(2):245–249. doi: 10.1128/am.19.2.245-249.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hatch M. T., Dimmick R. L. Physiological responses of airborne bacteria to shifts in relative humidity. Bacteriol Rev. 1966 Sep;30(3):597–603. doi: 10.1128/br.30.3.597-603.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hess G. E. Effects of oxygen on aerosolized Serratia marcescens. Appl Microbiol. 1965 Sep;13(5):781–787. doi: 10.1128/am.13.5.781-787.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lindow S. E., Knudsen G. R., Seidler R. J., Walter M. V., Lambou V. W., Amy P. S., Schmedding D., Prince V., Hern S. Aerial Dispersal and Epiphytic Survival of Pseudomonas syringae during a Pretest for the Release of Genetically Engineered Strains into the Environment. Appl Environ Microbiol. 1988 Jun;54(6):1557–1563. doi: 10.1128/aem.54.6.1557-1563.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MILLER W. S., SCHERFF R. A., PIEPOLI C. R., IDOINE L. S. Physical tracers for bacterial aerosols. Appl Microbiol. 1961 May;9:248–251. doi: 10.1128/am.9.3.248-251.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Poon C. P. Studies on the instantaneous death of airborne Escherichia coli. Am J Epidemiol. 1966 Jul;84(1):1–9. doi: 10.1093/oxfordjournals.aje.a120613. [DOI] [PubMed] [Google Scholar]
- WEBB S. J. Factors affecting the viability of air-borne bacteria. II. The effect of chemical additives on the behavior of air-borne cells. Can J Microbiol. 1960 Feb;6:71–87. doi: 10.1139/m60-010. [DOI] [PubMed] [Google Scholar]
- WEBB S. J. Factors affecting the viability of air-borne bacteria. III. The role of bonded water and protein structure in the death of air-borne cells. Can J Microbiol. 1960 Feb;6:89–105. doi: 10.1139/m60-011. [DOI] [PubMed] [Google Scholar]
- Webb S. J. The influence of oxygen and inositol on the survival of semidried microorganisms. Can J Microbiol. 1967 Jul;13(7):733–742. doi: 10.1139/m67-097. [DOI] [PubMed] [Google Scholar]