Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1990 Dec;56(12):3634–3642. doi: 10.1128/aem.56.12.3634-3642.1990

Purification and characterization of acidolysin, an acidic metalloprotease produced by Clostridium acetobutylicum ATCC 824.

C Croux 1, V Paquet 1, G Goma 1, P Soucaille 1
PMCID: PMC185045  PMID: 2082818

Abstract

Acidolysin an extracellular protease produced by Clostridium acetobutylicum ATCC 824 was purified to homogeneity by anion-exchange chromatography with a recovery of 91%. The enzyme was a monomeric protein with a molecular weight of 44,000 as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and an acidic isoelectric point of 3.3. Acidolysin was very sensitive to metal-chelating agents and phosphoramidon and was unaffected by sulfhydryl reagents. It was shown to be a calcium- and zinc-containing protease. It exhibited optimal activity against Azocoll at pH 5 and 45 degrees C. It was stable at low pH and heat labile above 50 degrees C. It exhibited specificity toward peptide bonds formed by the amino group of hydrophobic amino acids (isoleucine, leucine, and phenylalanine) and its NH2-terminal amino acid sequence showed a high degree of similarity with that of Bacillus subtilis neutral metalloprotease A. Acidolysin is the first phosphoramidon-sensitive, acidic zinc metalloprotease reported.

Full text

PDF
3634

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Azzo W., Woessner J. F., Jr Purification and characterization of an acid metalloproteinase from human articular cartilage. J Biol Chem. 1986 Apr 25;261(12):5434–5441. [PubMed] [Google Scholar]
  2. Colman P. M., Jansonius J. N., Matthews B. W. The structure of thermolysin: an electron density map at 2-3 A resolution. J Mol Biol. 1972 Oct 14;70(3):701–724. doi: 10.1016/0022-2836(72)90569-4. [DOI] [PubMed] [Google Scholar]
  3. DasGupta B. R. Activation of Clostridium botulinum type B toxin by an endogenous enzyme. J Bacteriol. 1971 Dec;108(3):1051–1057. doi: 10.1128/jb.108.3.1051-1057.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dasgupta B. R., Sugiyama H. Isolation and characterization of a protease from Clostridium botulinum type B. Biochim Biophys Acta. 1972 Jun 16;268(3):719–729. doi: 10.1016/0005-2744(72)90276-8. [DOI] [PubMed] [Google Scholar]
  5. ERLANGER B. F., KOKOWSKY N., COHEN W. The preparation and properties of two new chromogenic substrates of trypsin. Arch Biochem Biophys. 1961 Nov;95:271–278. doi: 10.1016/0003-9861(61)90145-x. [DOI] [PubMed] [Google Scholar]
  6. Edman P., Begg G. A protein sequenator. Eur J Biochem. 1967 Mar;1(1):80–91. doi: 10.1007/978-3-662-25813-2_14. [DOI] [PubMed] [Google Scholar]
  7. Feder J. A spectrophotometric assay for neutral protease. Biochem Biophys Res Commun. 1968 Jul 26;32(2):326–332. doi: 10.1016/0006-291x(68)90389-6. [DOI] [PubMed] [Google Scholar]
  8. Feder J., Keay L., Garrett L. R., Cirulis N., Moseley M. H., Wildi B. S. Bacillus cereus neutral protease. Biochim Biophys Acta. 1971 Oct;251(1):74–78. doi: 10.1016/0005-2795(71)90061-4. [DOI] [PubMed] [Google Scholar]
  9. Gripon J. C., Hermier J. Le système protéolytique de Penicillium roqueforti. III. - Purification, propriétés et spécificité d'une protéase inhibée par l'E.D.T.A. Biochimie. 1974;56(10):1323–1332. [PubMed] [Google Scholar]
  10. Kalisz H. M. Microbial proteinases. Adv Biochem Eng Biotechnol. 1988;36:1–65. doi: 10.1007/BFb0047944. [DOI] [PubMed] [Google Scholar]
  11. Keay L., Wildi B. S. Proteases of the genus Bacillus. I. Neutral proteases. Biotechnol Bioeng. 1970 Mar;12(2):179–212. doi: 10.1002/bit.260120205. [DOI] [PubMed] [Google Scholar]
  12. Kester W. R., Matthews B. W. Crystallographic study of the binding of dipeptide inhibitors to thermolysin: implications for the mechanism of catalysis. Biochemistry. 1977 May 31;16(11):2506–2516. doi: 10.1021/bi00630a030. [DOI] [PubMed] [Google Scholar]
  13. Komiyama T., Suda H., Aoyagi T., Takeuchi T., Umezawa H. Studies on inhibitory effect of phosphoramidon and its analogs on thermolysin. Arch Biochem Biophys. 1975 Dec;171(2):727–731. doi: 10.1016/0003-9861(75)90085-5. [DOI] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Levy P. L., Pangburn M. K., Burstein Y., Ericsson L. H., Neurath H., Walsh K. A. Evidence of homologous relationship between thermolysin and neutral protease A of Bacillus subtilis. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4341–4345. doi: 10.1073/pnas.72.11.4341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. MCCONN J. D., TSURU D., YASUNOBU K. T. BACILLUS SUBTILIS NEUTRAL PROTEINASE. I. A ZINC ENZYME OF HIGH SPECIFIC ACTIVITY. J Biol Chem. 1964 Nov;239:3706–3715. [PubMed] [Google Scholar]
  17. Matsubara H. Observations on the specificity of thermolysin with synthetic peptides. Biochem Biophys Res Commun. 1966 Aug 12;24(3):427–430. doi: 10.1016/0006-291x(66)90177-x. [DOI] [PubMed] [Google Scholar]
  18. Matsumoto K., Maeda H., Takata K., Kamata R., Okamura R. Purification and characterization of four proteases from a clinical isolate of Serratia marcescens kums 3958. J Bacteriol. 1984 Jan;157(1):225–232. doi: 10.1128/jb.157.1.225-232.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Montville T. J. Dependence of Clostridium botulinum gas and protease production on culture conditions. Appl Environ Microbiol. 1983 Feb;45(2):571–575. doi: 10.1128/aem.45.2.571-575.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Moore G. L. Use of azo-dye-bound collagen to measure reaction velocities of proteolytic enzymes. Anal Biochem. 1969 Oct 15;32(1):122–127. doi: 10.1016/0003-2697(69)90111-0. [DOI] [PubMed] [Google Scholar]
  21. Morihara K. Comparative specificity of microbial proteinases. Adv Enzymol Relat Areas Mol Biol. 1974;41(0):179–243. doi: 10.1002/9780470122860.ch5. [DOI] [PubMed] [Google Scholar]
  22. Morihara K. The specificities of various neutral and alkaline proteinases from microorganisms. Biochem Biophys Res Commun. 1967 Mar 21;26(6):656–661. doi: 10.1016/s0006-291x(67)80122-0. [DOI] [PubMed] [Google Scholar]
  23. Morihara K., Tsuzuki H., Oka T. Comparison of the specificities of various neutral proteinases from microorganisms. Arch Biochem Biophys. 1968 Mar 11;123(3):572–588. doi: 10.1016/0003-9861(68)90179-3. [DOI] [PubMed] [Google Scholar]
  24. Morihara K., Tsuzuki H. Proteolytic substrate specificity and some elastolytic properties of a thermostable bacterial proteinase. Biochim Biophys Acta. 1966 Apr 12;118(1):215–218. doi: 10.1016/s0926-6593(66)80164-9. [DOI] [PubMed] [Google Scholar]
  25. Nakane A. Proteases produced by a proteolytic mutant of Clostridium botulinum type E. J Gen Microbiol. 1978 Jul;107(1):85–91. doi: 10.1099/00221287-107-1-85. [DOI] [PubMed] [Google Scholar]
  26. Oda K., Sugitani M., Fukuhara K., Murao S. Purification and properties of a pepstatin-insensitive carboxyl proteinase from a gram-negative bacterium. Biochim Biophys Acta. 1987 Mar 19;923(3):463–469. doi: 10.1016/0304-4165(87)90055-9. [DOI] [PubMed] [Google Scholar]
  27. Remold H., Fasold H., Staib F. Purification and characterization of a proteolytic enzyme from Candida albicans. Biochim Biophys Acta. 1968 Oct 8;167(2):399–406. doi: 10.1016/0005-2744(68)90219-2. [DOI] [PubMed] [Google Scholar]
  28. Toma S., Campagnoli S., De Gregoriis E., Gianna R., Margarit I., Zamai M., Grandi G. Effect of Glu-143 and His-231 substitutions on the catalytic activity and secretion of Bacillus subtilis neutral protease. Protein Eng. 1989 Jan;2(5):359–364. doi: 10.1093/protein/2.5.359. [DOI] [PubMed] [Google Scholar]
  29. Vosbeck K. D., Greenberg B. D., Ochoa M. S., Whitney P. L., Awad W. M., Jr Proteolytic enzymes of the K-1 strain of Streptomyces griseus obtained from a commercial preparation (Pronase). Effect of pH, metal ions, and amino acids on aminopeptidase activity. J Biol Chem. 1978 Jan 10;253(1):257–260. [PubMed] [Google Scholar]
  30. Weaver L. H., Kester W. R., Matthews B. W. A crystallographic study of the complex of phosphoramidon with thermolysin. A model for the presumed catalytic transition state and for the binding of extended substances. J Mol Biol. 1977 Jul;114(1):119–132. doi: 10.1016/0022-2836(77)90286-8. [DOI] [PubMed] [Google Scholar]
  31. Wilkes S. H., Bayliss M. E., Prescott J. M. Critical ionizing groups in Aeromonas neutral protease. J Biol Chem. 1988 Feb 5;263(4):1821–1825. [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES