Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1990 Dec;56(12):3643–3648. doi: 10.1128/aem.56.12.3643-3648.1990

Degradation of Adsorbed Protein by Attached Bacteria in Relationship to Surface Hydrophobicity

Matts-Ola Samuelsson 1,, David L Kirchman 1,*
PMCID: PMC185046  PMID: 16348369

Abstract

The relationships among surface energy, adsorbed organic matter, and attached bacterial growth were examined by measuring the degradation of adsorbed ribulose-1,5-bisphosphate carboxylase (a common algal protein) by attached bacteria (Pseudomonas strain S9). We found that surface energy (work of adhesion of water) determined the amount and availability of adsorbed protein and, consequently, the growth of attached bacteria. Percent degradation of adsorbed ribulose-1,5-bisphosphate carboxylase decreased with increasing hydrophobicity of the surface (decreasing work of adhesion). As a result, growth rates of attached bacteria were initially higher on hydrophilic glass than on hydrophobic polyethylene. However, during long (6-h) incubations, growth rates increased with surface hydrophobicity because of increasing amounts of adsorbed protein. Together with previous studies, these results suggest that the number of attached bacteria over time will be a complex function of surface energy. Whereas both protein adsorption and bacterial attachment decrease with increasing surface energy, availability of adsorbed protein and consequently initial bacterial growth rates increase with surface energy.

Full text

PDF
3643

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Absolom D. R., Lamberti F. V., Policova Z., Zingg W., van Oss C. J., Neumann A. W. Surface thermodynamics of bacterial adhesion. Appl Environ Microbiol. 1983 Jul;46(1):90–97. doi: 10.1128/aem.46.1.90-97.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Absolom D. R., Zingg W., Neumann A. W. Protein adsorption to polymer particles: role of surface properties. J Biomed Mater Res. 1987 Feb;21(2):161–171. doi: 10.1002/jbm.820210202. [DOI] [PubMed] [Google Scholar]
  3. Albertson N. H., Nyström T., Kjelleberg S. Exoprotease Activity of Two Marine Bacteria during Starvation. Appl Environ Microbiol. 1990 Jan;56(1):218–223. doi: 10.1128/aem.56.1.218-223.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Darst S. A., Robertson C. R., Berzofsky J. A. Adsorption of the protein antigen myoglobin affects the binding of conformation-specific monoclonal antibodies. Biophys J. 1988 Apr;53(4):533–539. doi: 10.1016/S0006-3495(88)83133-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dexter S. C., Sullivan J. D., Williams J., Watson S. W. Influence of substrate wettability on the attachment of marine bacteria to various surfaces. Appl Microbiol. 1975 Aug;30(2):298–308. doi: 10.1128/am.30.2.298-308.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hobbie J. E., Daley R. J., Jasper S. Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl Environ Microbiol. 1977 May;33(5):1225–1228. doi: 10.1128/aem.33.5.1225-1228.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lorenz M. G., Wackernagel W. Adsorption of DNA to sand and variable degradation rates of adsorbed DNA. Appl Environ Microbiol. 1987 Dec;53(12):2948–2952. doi: 10.1128/aem.53.12.2948-2952.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Miziorko H. M., Lorimer G. H. Ribulose-1,5-bisphosphate carboxylase-oxygenase. Annu Rev Biochem. 1983;52:507–535. doi: 10.1146/annurev.bi.52.070183.002451. [DOI] [PubMed] [Google Scholar]
  9. Pringle J. H., Fletcher M. Influence of substratum wettability on attachment of freshwater bacteria to solid surfaces. Appl Environ Microbiol. 1983 Mar;45(3):811–817. doi: 10.1128/aem.45.3.811-817.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Tack B. F., Dean J., Eilat D., Lorenz P. E., Schechter A. N. Tritium labeling of proteins to high specific radioactivity by reduction methylation. J Biol Chem. 1980 Sep 25;255(18):8842–8847. [PubMed] [Google Scholar]
  11. Wrangstadh M., Conway P. L., Kjelleberg S. The production and release of an extracellular polysaccharide during starvation of a marine Pseudomonas sp. and the effect thereof on adhesion. Arch Microbiol. 1986 Aug;145(3):220–227. doi: 10.1007/BF00443649. [DOI] [PubMed] [Google Scholar]
  12. van Loosdrecht M. C., Lyklema J., Norde W., Schraa G., Zehnder A. J. The role of bacterial cell wall hydrophobicity in adhesion. Appl Environ Microbiol. 1987 Aug;53(8):1893–1897. doi: 10.1128/aem.53.8.1893-1897.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. van Loosdrecht M. C., Lyklema J., Norde W., Zehnder A. J. Influence of interfaces on microbial activity. Microbiol Rev. 1990 Mar;54(1):75–87. doi: 10.1128/mr.54.1.75-87.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES