Abstract
We describe a novel method for quantitative measurement of beta-galactosidase (beta-gal) levels in bacteria and yeasts by using flow cytometry, a method which allows viable microbial cells to be sorted on the basis of the expressed activity and to be recultivated. The method is based on encapsulating single cells in agarose microbeads 20 to 30 microns in diameter and analyzing the beta-gal activity of the colonies that develop (containing several hundred cells) by using the fluorogenic substrate fluorescein-di-beta-D-galactopyranoside (FDG). Three strains of Escherichia coli, containing different levels of beta-gal, served as a model system. A high degree of correlation was found between the average fluorescence measured per bead and the level of the enzyme in extracts of the respective strain. Although the use of FDG necessitates cell permeabilization, conditions were found under which a small part of each colony remained viable, yet most of the enzyme was exposed to the substrate. This allowed sorting of microcolonies and plating with close to 100% efficiency. The potential of the technique was demonstrated by selecting beta-gal-positive cells from an artificial mixture of beta-gal-positive and beta-gal-negative E. coli strains.
Full text
PDF





Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bracha M., Yagil E. Genetic mapping of the phoR regulator gene of alkaline phosphatase in Escherichia coli. J Gen Microbiol. 1969 Nov;59(1):77–81. doi: 10.1099/00221287-59-1-77. [DOI] [PubMed] [Google Scholar]
- Brenner D. G., Lin-Chao S., Cohen S. N. Analysis of mammalian cell genetic regulation in situ by using retrovirus-derived "portable exons" carrying the Escherichia coli lacZ gene. Proc Natl Acad Sci U S A. 1989 Jul;86(14):5517–5521. doi: 10.1073/pnas.86.14.5517. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Casadaban M. J., Cohen S. N. Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. J Mol Biol. 1980 Apr;138(2):179–207. doi: 10.1016/0022-2836(80)90283-1. [DOI] [PubMed] [Google Scholar]
- Eitzman P. D., Hendrick J. L., Srienc F. Quantitative immunofluorescence in single Saccharomyces cerevisiae cells. Cytometry. 1989 Jul;10(4):475–483. doi: 10.1002/cyto.990100417. [DOI] [PubMed] [Google Scholar]
- Hofmann J., Sernetz M. A kinetic study on the enzymatic hydrolysis of fluorescein diacetate and fluorescein-di-beta-D-galactopyranoside. Anal Biochem. 1983 May;131(1):180–186. doi: 10.1016/0003-2697(83)90151-3. [DOI] [PubMed] [Google Scholar]
- Jongkind J. F., Verkerk A., Sernetz M. Detection of acid-beta-galactosidase activity in viable human fibroblasts by flow cytometry. Cytometry. 1986 Sep;7(5):463–466. doi: 10.1002/cyto.990070512. [DOI] [PubMed] [Google Scholar]
- Kennell D., Riezman H. Transcription and translation initiation frequencies of the Escherichia coli lac operon. J Mol Biol. 1977 Jul;114(1):1–21. doi: 10.1016/0022-2836(77)90279-0. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Nir R., Lamed R., Gueta L., Sahar E. Single-cell entrapment and microcolony development within uniform microspheres amenable to flow cytometry. Appl Environ Microbiol. 1990 Sep;56(9):2870–2875. doi: 10.1128/aem.56.9.2870-2875.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nolan G. P., Fiering S., Nicolas J. F., Herzenberg L. A. Fluorescence-activated cell analysis and sorting of viable mammalian cells based on beta-D-galactosidase activity after transduction of Escherichia coli lacZ. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2603–2607. doi: 10.1073/pnas.85.8.2603. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pedrique M., Castillo F. J. Regulation of beta-D-galactosidase synthesis in Candida pseudotropicalis. Appl Environ Microbiol. 1982 Feb;43(2):303–310. doi: 10.1128/aem.43.2.303-310.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Srienc F., Campbell J. L., Bailey J. E. Flow cytometry analysis of recombinant Saccharomyces cerevisiae populations. Cytometry. 1986 Mar;7(2):132–141. doi: 10.1002/cyto.990070203. [DOI] [PubMed] [Google Scholar]
- Wittrup K. D., Bailey J. E. A single-cell assay of beta-galactosidase activity in Saccharomyces cerevisiae. Cytometry. 1988 Jul;9(4):394–404. doi: 10.1002/cyto.990090418. [DOI] [PubMed] [Google Scholar]
- Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]



