Abstract
The readily extractable lipids from a Pseudomonas aeruginosa isolate stepwise adapted to polymyxin resistance were compared with those of the susceptible parent and of a revertant strain which regained susceptibility. Significant qualitative and quantitative lipid alterations accompany the acquisition of resistance. Changes include the appearance of a major unidentified lipid (lipid X) unique to the readily extractable lipids of resistant cells. Comparative studies with parent and revertant strains indicated a significant decrease in the phospholipid content of resistant cells. Thin-layer chromatography of resistant-cell readily extractable lipids demonstrated: (i) the emergence of lipid X (36% of total readily extractable lipids), (ii) a decrease in phosphatidylethanolamine and phosphatidylglycerol, and (iii) an increase in diphosphatidylglycerol. Lipid X was purified by preparative silicic acid column chromatography and thin-layer chromatography and characterized by analytical thin-layer chromatography, column adsorption chromatography, and gas-liquid chromatography. Data from this study indicated that lipid X was a mixture of free fatty acids. The fatty acids present in lipid X were qualitatively and quantitatively the same as the fatty acids esterified to the phospholipids in the readily extractable lipids.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brown M. R., Watkins W. M. Low magnesium and phospholipid content of cell wals of Pseudomonas aeruginosa resistant to polymyxin. Nature. 1970 Sep 26;227(5265):1360–1361. doi: 10.1038/2271360a0. [DOI] [PubMed] [Google Scholar]
- Brown M. R., Wood S. M. Relation between cation and lipid content of cell walls of Pseudomonas aeruginosa, Proteus vulgaris and Klebsiella aerogenes and their sensitivity to polymyxin B and other antibacterial agents. J Pharm Pharmacol. 1972 Mar;24(3):215–218. doi: 10.1111/j.2042-7158.1972.tb08967.x. [DOI] [PubMed] [Google Scholar]
- Conrad R. S., Gilleland H. E., Jr Lipid alterations in cell envelopes of polymyxin-resistant Pseudomonas aeruginosa isolates. J Bacteriol. 1981 Nov;148(2):487–497. doi: 10.1128/jb.148.2.487-497.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Conrad R. S., Wulf R. G., Clay D. L. Effects of carbon sources on antibiotic resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1979 Jan;15(1):59–66. doi: 10.1128/aac.15.1.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dunnick J. K., O'Leary W. M. Correlation of bacteria lipid composition with antibiotic resistance. J Bacteriol. 1970 Mar;101(3):892–900. doi: 10.1128/jb.101.3.892-900.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
- Gilleland H. E., Jr, Conrad R. S. Chemical alterations in cell envelopes of polymyxin-resistant mutants of Pseudomonas aeruginosa grown in the absence or presence of polymyxin. Antimicrob Agents Chemother. 1982 Dec;22(6):1012–1016. doi: 10.1128/aac.22.6.1012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gilleland H. E., Jr, Farley L. B. Adaptive resistance to polymyxin in Pseudomonas aeruginosa due to an outer membrane impermeability mechanism. Can J Microbiol. 1982 Jul;28(7):830–840. doi: 10.1139/m82-125. [DOI] [PubMed] [Google Scholar]
- Gilleland H. E., Jr, Lyle R. D. Chemical alterations in cell envelopes of polymyxin-resistant Pseudomonas aeruginosa isolates. J Bacteriol. 1979 Jun;138(3):839–845. doi: 10.1128/jb.138.3.839-845.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gilleland H. E., Jr, Murray R. G. Ultrastructural study of polymyxin-resistant isolates of Pseudomonas aeruginosa. J Bacteriol. 1976 Jan;125(1):267–281. doi: 10.1128/jb.125.1.267-281.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gilleland H. E., Jr, Stinnett J. D., Eagon R. G. Ultrastructural and chemical alteration of the cell envelope of Pseudomonas aeruginosa, associated with resistance to ethylenediaminetetraacetate resulting from growth in a Mg2+-deficient medium. J Bacteriol. 1974 Jan;117(1):302–311. doi: 10.1128/jb.117.1.302-311.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hancock R. E., Decad G. M., Nikaido H. Identification of the protein producing transmembrane diffusion pores in the outer membrane of Pseudomonas aeruginosa PA01. Biochim Biophys Acta. 1979 Jul 5;554(2):323–331. doi: 10.1016/0005-2736(79)90373-0. [DOI] [PubMed] [Google Scholar]
- Jacques N. A. Studies on cyclopropane fatty acid synthesis. Correlation between the state of reduction of respiratory components and the accumulation of methylene hexadecanoic acid by Pseudomonas denitrificans. Biochim Biophys Acta. 1981 Aug 24;665(2):270–282. doi: 10.1016/0005-2760(81)90012-6. [DOI] [PubMed] [Google Scholar]
- Kusano T., Izaki K., Takahashi H. Degradation of phospholipid in Pseudomonas aeruginosa induced by polymyxin B. J Antibiot (Tokyo) 1975 Sep;28(9):689–695. doi: 10.7164/antibiotics.28.689. [DOI] [PubMed] [Google Scholar]
- Kusano T., Izaki K., Takahashi H. In vivo activation by polymyxin B of phospholipase C from Pseudomonas aeruginosa. J Antibiot (Tokyo) 1977 Oct;30(10):900–902. doi: 10.7164/antibiotics.30.900. [DOI] [PubMed] [Google Scholar]
- Leive L. The barrier function of the gram-negative envelope. Ann N Y Acad Sci. 1974 May 10;235(0):109–129. doi: 10.1111/j.1749-6632.1974.tb43261.x. [DOI] [PubMed] [Google Scholar]
- Taylor F. R., Cronan J. E., Jr Cyclopropane fatty acid synthase of Escherichia coli. Stabilization, purification, and interaction with phospholipid vesicles. Biochemistry. 1979 Jul 24;18(15):3292–3300. doi: 10.1021/bi00582a015. [DOI] [PubMed] [Google Scholar]
- Teuber M., Miller I. R. Selective binding of polymyxin B to negatively charged lipid monolayers. Biochim Biophys Acta. 1977 Jun 16;467(3):280–289. doi: 10.1016/0005-2736(77)90305-4. [DOI] [PubMed] [Google Scholar]
- Tsang J. C., Kranz D. M., Brown D. A. The effect of polymyxin B on outer membrane of Serratia marcescens: activation and dissociation of outer membrane associated alkaline phosphatase. J Antibiot (Tokyo) 1977 Mar;30(3):270–271. doi: 10.7164/antibiotics.30.270. [DOI] [PubMed] [Google Scholar]
- WADE H. E., MORGAN D. M. Detection of phosphate esters on paper chromatograms. Nature. 1953 Mar 21;171(4351):529–530. doi: 10.1038/171529a0. [DOI] [PubMed] [Google Scholar]
- ZALKIN H., LAW J. H., GOLDFINE H. Enzymatic synthesis of cyclopropane fatty acids catalyzed by bacterial extracts. J Biol Chem. 1963 Apr;238:1242–1248. [PubMed] [Google Scholar]

