Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1995 Jul;96(1):69–77. doi: 10.1172/JCI118081

Immediate-early gene induction and MAP kinase activation during recovery from metabolic inhibition in cultured cardiac myocytes.

A Yao 1, T Takahashi 1, T Aoyagi 1, K Kinugawa 1, O Kohmoto 1, S Sugiura 1, T Serizawa 1
PMCID: PMC185174  PMID: 7615838

Abstract

To investigate how cardiac myocytes recover from a brief period of ischemia, we used a metabolic inhibition (MI) model, one of the in vitro ischemic models, of chick embryo ventricular myocytes, and examined the induction of immediate-early (IE) genes mRNAs and the activity of mitogen-activated protein (MAP) kinase. We performed Northern blot analysis to study the expression of c-jun, c-fos, and c-myc mRNAs during MI using 1 mM NaCN and 20 mM 2-deoxy-d-glucose, and also during the recovery from MI of 30 min. The c-fos mRNA was induced transiently at 30 and 60 min during the recovery. The expression of c-jun mRNA was significantly augmented at 30, 60, 90, and 120 min during the recovery (3.0-, 4.7-, 2.4-, and 1.9-fold induction, respectively) and so did the expression of c-myc mRNA (1.4-, 1.7-, 1.8-, and 2.0-fold induction, respectively). In contrast, the levels of these mRNAs remained unchanged during MI. The electrophoretic mobility shift assay revealed that AP-1 DNA binding activity markedly increased at 120 min during the recovery. When the cells were pretreated with protein kinase C (PKC) inhibitors, 100 microM H-7 or 1 microM staurosporine, the induction of c-jun mRNA at 60 min during the recovery was markedly suppressed (95 or 82% reduction, respectively). The c-jun induction was partially inhibited when the cells were treated with 2 mM EGTA during MI and the recovery (42% reduction). MAP kinase activity quantified with in-gel kinase assay was unchanged during MI, but significantly increased at 5, 10, and 15 min during the recovery (3.0-, 4.1-, and 3.4-fold increase, respectively). S6 kinase activity was also augmented significantly at 15 min during the recovery. Thus, these data suggest that IE genes as well as MAP kinase may play roles in the recovery process of cardiac myocytes from MI, and that the augmentation of c-jun expression needs the activation of PKC and to some extent, [Ca2+]i.

Full text

PDF
69

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Angel P., Hattori K., Smeal T., Karin M. The jun proto-oncogene is positively autoregulated by its product, Jun/AP-1. Cell. 1988 Dec 2;55(5):875–885. doi: 10.1016/0092-8674(88)90143-2. [DOI] [PubMed] [Google Scholar]
  2. Barry W. H., Peeters G. A., Rasmussen C. A., Jr, Cunningham M. J. Role of changes in [Ca2+]i in energy deprivation contracture. Circ Res. 1987 Nov;61(5):726–734. doi: 10.1161/01.res.61.5.726. [DOI] [PubMed] [Google Scholar]
  3. Bishopric N. H., Jayasena V., Webster K. A. Positive regulation of the skeletal alpha-actin gene by Fos and Jun in cardiac myocytes. J Biol Chem. 1992 Dec 15;267(35):25535–25540. [PubMed] [Google Scholar]
  4. Brand T., Sharma H. S., Fleischmann K. E., Duncker D. J., McFalls E. O., Verdouw P. D., Schaper W. Proto-oncogene expression in porcine myocardium subjected to ischemia and reperfusion. Circ Res. 1992 Dec;71(6):1351–1360. doi: 10.1161/01.res.71.6.1351. [DOI] [PubMed] [Google Scholar]
  5. Childs T. J., Watson M. H., Sanghera J. S., Campbell D. L., Pelech S. L., Mak A. S. Phosphorylation of smooth muscle caldesmon by mitogen-activated protein (MAP) kinase and expression of MAP kinase in differentiated smooth muscle cells. J Biol Chem. 1992 Nov 15;267(32):22853–22859. [PubMed] [Google Scholar]
  6. Chiu R., Boyle W. J., Meek J., Smeal T., Hunter T., Karin M. The c-Fos protein interacts with c-Jun/AP-1 to stimulate transcription of AP-1 responsive genes. Cell. 1988 Aug 12;54(4):541–552. doi: 10.1016/0092-8674(88)90076-1. [DOI] [PubMed] [Google Scholar]
  7. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  8. Eisner D. A., Nichols C. G., O'Neill S. C., Smith G. L., Valdeolmillos M. The effects of metabolic inhibition on intracellular calcium and pH in isolated rat ventricular cells. J Physiol. 1989 Apr;411:393–418. doi: 10.1113/jphysiol.1989.sp017580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ertl G., Gaudron P., Hu K. Ventricular remodeling after myocardial infarction. Experimental and clinical studies. Basic Res Cardiol. 1993;88 (Suppl 1):125–137. doi: 10.1007/978-3-642-72497-8_9. [DOI] [PubMed] [Google Scholar]
  10. Esumi K., Nishida M., Shaw D., Smith T. W., Marsh J. D. NADH measurements in adult rat myocytes during simulated ischemia. Am J Physiol. 1991 Jun;260(6 Pt 2):H1743–H1752. doi: 10.1152/ajpheart.1991.260.6.H1743. [DOI] [PubMed] [Google Scholar]
  11. Gotoh Y., Nishida E., Yamashita T., Hoshi M., Kawakami M., Sakai H. Microtubule-associated-protein (MAP) kinase activated by nerve growth factor and epidermal growth factor in PC12 cells. Identity with the mitogen-activated MAP kinase of fibroblastic cells. Eur J Biochem. 1990 Nov 13;193(3):661–669. doi: 10.1111/j.1432-1033.1990.tb19384.x. [DOI] [PubMed] [Google Scholar]
  12. Halazonetis T. D., Georgopoulos K., Greenberg M. E., Leder P. c-Jun dimerizes with itself and with c-Fos, forming complexes of different DNA binding affinities. Cell. 1988 Dec 2;55(5):917–924. doi: 10.1016/0092-8674(88)90147-x. [DOI] [PubMed] [Google Scholar]
  13. Hess O. M., Schneider J., Nonogi H., Carroll J. D., Schneider K., Turina M., Krayenbuehl H. P. Myocardial structure in patients with exercise-induced ischemia. Circulation. 1988 May;77(5):967–977. doi: 10.1161/01.cir.77.5.967. [DOI] [PubMed] [Google Scholar]
  14. Ikenouchi H., Kohmoto O., McMillan M., Barry W. H. Contributions of [Ca2+]i, [Pi]i, and pHi to altered diastolic myocyte tone during partial metabolic inhibition. J Clin Invest. 1991 Jul;88(1):55–61. doi: 10.1172/JCI115304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ikenouchi H., Zhao L., McMillan M., Hammond E. M., Barry W. H. ATP depletion causes a reversible decrease in Na+ pump density in cultured ventricular myocytes. Am J Physiol. 1993 Apr;264(4 Pt 2):H1208–H1214. doi: 10.1152/ajpheart.1993.264.4.H1208. [DOI] [PubMed] [Google Scholar]
  16. Ishida H., Kohmoto O., Bridge J. H., Barry W. H. Alterations in cation homeostasis in cultured chick ventricular cells during and after recovery from adenosine triphosphate depletion. J Clin Invest. 1988 Apr;81(4):1173–1181. doi: 10.1172/JCI113432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Iwaki K., Sukhatme V. P., Shubeita H. E., Chien K. R. Alpha- and beta-adrenergic stimulation induces distinct patterns of immediate early gene expression in neonatal rat myocardial cells. fos/jun expression is associated with sarcomere assembly; Egr-1 induction is primarily an alpha 1-mediated response. J Biol Chem. 1990 Aug 15;265(23):13809–13817. [PubMed] [Google Scholar]
  18. Kim S. J., Angel P., Lafyatis R., Hattori K., Kim K. Y., Sporn M. B., Karin M., Roberts A. B. Autoinduction of transforming growth factor beta 1 is mediated by the AP-1 complex. Mol Cell Biol. 1990 Apr;10(4):1492–1497. doi: 10.1128/mcb.10.4.1492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kinugawa K., Takahashi T., Kohmoto O., Yao A., Aoyagi T., Momomura S., Hirata Y., Serizawa T. Nitric oxide-mediated effects of interleukin-6 on [Ca2+]i and cell contraction in cultured chick ventricular myocytes. Circ Res. 1994 Aug;75(2):285–295. doi: 10.1161/01.res.75.2.285. [DOI] [PubMed] [Google Scholar]
  20. Kohmoto O., Barry W. H. Mechanism of protective effects of Ca++ channel blockers on energy deprivation contracture in cultured ventricular myocytes. J Pharmacol Exp Ther. 1989 Feb;248(2):871–878. [PubMed] [Google Scholar]
  21. Kohmoto O., Ikenouchi H., Hirata Y., Momomura S., Serizawa T., Barry W. H. Variable effects of endothelin-1 on [Ca2+]i transients, pHi, and contraction in ventricular myocytes. Am J Physiol. 1993 Sep;265(3 Pt 2):H793–H800. doi: 10.1152/ajpheart.1993.265.3.H793. [DOI] [PubMed] [Google Scholar]
  22. Komuro I., Kurabayashi M., Takaku F., Yazaki Y. Expression of cellular oncogenes in the myocardium during the developmental stage and pressure-overloaded hypertrophy of the rat heart. Circ Res. 1988 Jun;62(6):1075–1079. doi: 10.1161/01.res.62.6.1075. [DOI] [PubMed] [Google Scholar]
  23. Kovacic-Milivojević B., Gardner D. G. Divergent regulation of the human atrial natriuretic peptide gene by c-jun and c-fos. Mol Cell Biol. 1992 Jan;12(1):292–301. doi: 10.1128/mcb.12.1.292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  25. Marais R., Wynne J., Treisman R. The SRF accessory protein Elk-1 contains a growth factor-regulated transcriptional activation domain. Cell. 1993 Apr 23;73(2):381–393. doi: 10.1016/0092-8674(93)90237-k. [DOI] [PubMed] [Google Scholar]
  26. Ouellette A. J., Malt R. A., Sukhatme V. P., Bonventre J. V. Expression of two "immediate early" genes, Egr-1 and c-fos, in response to renal ischemia and during compensatory renal hypertrophy in mice. J Clin Invest. 1990 Mar;85(3):766–771. doi: 10.1172/JCI114502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pfeffer M. A., Braunwald E. Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation. 1990 Apr;81(4):1161–1172. doi: 10.1161/01.cir.81.4.1161. [DOI] [PubMed] [Google Scholar]
  28. Pulverer B. J., Kyriakis J. M., Avruch J., Nikolakaki E., Woodgett J. R. Phosphorylation of c-jun mediated by MAP kinases. Nature. 1991 Oct 17;353(6345):670–674. doi: 10.1038/353670a0. [DOI] [PubMed] [Google Scholar]
  29. Rosenzweig A., Halazonetis T. D., Seidman J. G., Seidman C. E. Proximal regulatory domains of rat atrial natriuretic factor gene. Circulation. 1991 Sep;84(3):1256–1265. doi: 10.1161/01.cir.84.3.1256. [DOI] [PubMed] [Google Scholar]
  30. Sadoshima J., Izumo S. Mechanical stretch rapidly activates multiple signal transduction pathways in cardiac myocytes: potential involvement of an autocrine/paracrine mechanism. EMBO J. 1993 Apr;12(4):1681–1692. doi: 10.1002/j.1460-2075.1993.tb05813.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sadoshima J., Qiu Z., Morgan J. P., Izumo S. Angiotensin II and other hypertrophic stimuli mediated by G protein-coupled receptors activate tyrosine kinase, mitogen-activated protein kinase, and 90-kD S6 kinase in cardiac myocytes. The critical role of Ca(2+)-dependent signaling. Circ Res. 1995 Jan;76(1):1–15. doi: 10.1161/01.res.76.1.1. [DOI] [PubMed] [Google Scholar]
  32. Schneider M. D., Parker T. G. Cardiac myocytes as targets for the action of peptide growth factors. Circulation. 1990 May;81(5):1443–1456. doi: 10.1161/01.cir.81.5.1443. [DOI] [PubMed] [Google Scholar]
  33. Schreiber E., Matthias P., Müller M. M., Schaffner W. Rapid detection of octamer binding proteins with 'mini-extracts', prepared from a small number of cells. Nucleic Acids Res. 1989 Aug 11;17(15):6419–6419. doi: 10.1093/nar/17.15.6419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Schunkert H., Jahn L., Izumo S., Apstein C. S., Lorell B. H. Localization and regulation of c-fos and c-jun protooncogene induction by systolic wall stress in normal and hypertrophied rat hearts. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11480–11484. doi: 10.1073/pnas.88.24.11480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sellevold O. F., Jynge P., Aarstad K. High performance liquid chromatography: a rapid isocratic method for determination of creatine compounds and adenine nucleotides in myocardial tissue. J Mol Cell Cardiol. 1986 May;18(5):517–527. doi: 10.1016/s0022-2828(86)80917-8. [DOI] [PubMed] [Google Scholar]
  36. Shiina N., Moriguchi T., Ohta K., Gotoh Y., Nishida E. Regulation of a major microtubule-associated protein by MPF and MAP kinase. EMBO J. 1992 Nov;11(11):3977–3984. doi: 10.1002/j.1460-2075.1992.tb05491.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Starksen N. F., Simpson P. C., Bishopric N., Coughlin S. R., Lee W. M., Escobedo J. A., Williams L. T. Cardiac myocyte hypertrophy is associated with c-myc protooncogene expression. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8348–8350. doi: 10.1073/pnas.83.21.8348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Suzuki T., Murakami M., Onai N., Fukuda E., Hashimoto Y., Sonobe M. H., Kameda T., Ichinose M., Miki K., Iba H. Analysis of AP-1 function in cellular transformation pathways. J Virol. 1994 Jun;68(6):3527–3535. doi: 10.1128/jvi.68.6.3527-3535.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Takahashi T., Schunkert H., Isoyama S., Wei J. Y., Nadal-Ginard B., Grossman W., Izumo S. Age-related differences in the expression of proto-oncogene and contractile protein genes in response to pressure overload in the rat myocardium. J Clin Invest. 1992 Mar;89(3):939–946. doi: 10.1172/JCI115675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Van Why S. K., Mann A. S., Thulin G., Zhu X. H., Kashgarian M., Siegel N. J. Activation of heat-shock transcription factor by graded reductions in renal ATP, in vivo, in the rat. J Clin Invest. 1994 Oct;94(4):1518–1523. doi: 10.1172/JCI117492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Webster K. A., Discher D. J., Bishopric N. H. Induction and nuclear accumulation of fos and jun proto-oncogenes in hypoxic cardiac myocytes. J Biol Chem. 1993 Aug 5;268(22):16852–16858. [PubMed] [Google Scholar]
  42. Webster K. A., Discher D. J., Bishopric N. H. Regulation of fos and jun immediate-early genes by redox or metabolic stress in cardiac myocytes. Circ Res. 1994 Apr;74(4):679–686. doi: 10.1161/01.res.74.4.679. [DOI] [PubMed] [Google Scholar]
  43. Yamazaki T., Tobe K., Hoh E., Maemura K., Kaida T., Komuro I., Tamemoto H., Kadowaki T., Nagai R., Yazaki Y. Mechanical loading activates mitogen-activated protein kinase and S6 peptide kinase in cultured rat cardiac myocytes. J Biol Chem. 1993 Jun 5;268(16):12069–12076. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES