Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1995 Jul;96(1):117–125. doi: 10.1172/JCI118010

Activation of Cl secretion during chemical hypoxia by endogenous release of adenosine in intestinal epithelial monolayers.

J B Matthews 1, K J Tally 1, J A Smith 1, A J Zeind 1, B J Hrnjez 1
PMCID: PMC185179  PMID: 7615780

Abstract

Intestinal ischemia is characterized by rapid early inhibition of absorptive function and the appearance of net secretion, although why active secretion persists in the setting of a mucosal energy deficit is unknown. The cryptlike epithelial line T84, a well-characterized model of intestinal Cl- secretion, develops a prominent increase in short-circuit current (Isc, indicative of active Cl- transport) in response to "hypoxia" induced by metabolic inhibitors. The increased Isc is associated with the initial decrease in monolayer ATP content. The Isc is transient and disappears with progressive energy depletion, although graded degrees of ATP depletion induce a more sustained Isc response. Chromatographic analysis and secretory bioassays show that the Isc response to metabolic inhibitors is related to the endogenous release of adenosine into the extracellular space in quantities sufficient to interact locally with stimulatory adenosine receptors. Unlike its classical role as a metabolic feedback inhibitor, adenosine appears to function as an autocrine "feed-forward" activator of active intestinal Cl- secretion. These studies suggest a novel role for adenosine in the conversion of the gut from an absorptive to a secretory organ during ischemic stress, thus contributing to the initial diarrheal manifestation of intestinal ischemia.

Full text

PDF
117

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arch J. R., Newsholme E. A. The control of the metabolism and the hormonal role of adenosine. Essays Biochem. 1978;14:82–123. [PubMed] [Google Scholar]
  2. BERNE R. M. Cardiac nucleotides in hypoxia: possible role in regulation of coronary blood flow. Am J Physiol. 1963 Feb;204:317–322. doi: 10.1152/ajplegacy.1963.204.2.317. [DOI] [PubMed] [Google Scholar]
  3. Bardenheuer H., Schrader J. Relationship between myocardial oxygen consumption, coronary flow, and adenosine release in an improved isolated working heart preparation of guinea pigs. Circ Res. 1983 Mar;52(3):263–271. doi: 10.1161/01.res.52.3.263. [DOI] [PubMed] [Google Scholar]
  4. Barrett K. E., Huott P. A., Shah S. S., Dharmsathaphorn K., Wasserman S. I. Differing effects of apical and basolateral adenosine on colonic epithelial cell line T84. Am J Physiol. 1989 Jan;256(1 Pt 1):C197–C203. doi: 10.1152/ajpcell.1989.256.1.C197. [DOI] [PubMed] [Google Scholar]
  5. Belloni F. L., Elkin P. L., Giannotto B. The mechanism of adenosine release from hypoxic rat liver cells. Br J Pharmacol. 1985 Jun;85(2):441–446. doi: 10.1111/j.1476-5381.1985.tb08880.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Blum H., Summers J. J., Schnall M. D., Barlow C., Leigh J. S., Jr, Chance B., Buzby G. P. Acute intestinal ischemia studies by phosphorus nuclear magnetic resonance spectroscopy. Ann Surg. 1986 Jul;204(1):83–88. doi: 10.1097/00000658-198607000-00012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bockman E. L., Berne R. M., Rubio R. Adenosine and active hyperemia in dog skeletal muscle. Am J Physiol. 1976 Jun;230(6):1531–1537. doi: 10.1152/ajplegacy.1976.230.6.1531. [DOI] [PubMed] [Google Scholar]
  8. Bontemps F., Van den Berghe G., Hers H. G. Pathways of adenine nucleotide catabolism in erythrocytes. J Clin Invest. 1986 Mar;77(3):824–830. doi: 10.1172/JCI112379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bruns R. F. Adenosine receptors. Roles and pharmacology. Ann N Y Acad Sci. 1990;603:211–226. doi: 10.1111/j.1749-6632.1990.tb37674.x. [DOI] [PubMed] [Google Scholar]
  10. Cook B. H., Wilson E. R., Jr, Taylor A. E. Intestinal fluid loss in hemorrhagic shock. Am J Physiol. 1971 Nov;221(5):1494–1498. doi: 10.1152/ajplegacy.1971.221.5.1494. [DOI] [PubMed] [Google Scholar]
  11. Delyani J. A., Van Wylen D. G. Endocardial and epicardial interstitial purines and lactate during graded ischemia. Am J Physiol. 1994 Mar;266(3 Pt 2):H1019–H1026. doi: 10.1152/ajpheart.1994.266.3.H1019. [DOI] [PubMed] [Google Scholar]
  12. Dharmsathaphorn K., Madara J. L. Established intestinal cell lines as model systems for electrolyte transport studies. Methods Enzymol. 1990;192:354–389. doi: 10.1016/0076-6879(90)92082-o. [DOI] [PubMed] [Google Scholar]
  13. Dharmsathaphorn K., Mandel K. G., Masui H., McRoberts J. A. Vasoactive intestinal polypeptide-induced chloride secretion by a colonic epithelial cell line. Direct participation of a basolaterally localized Na+,K+,Cl- cotransport system. J Clin Invest. 1985 Feb;75(2):462–471. doi: 10.1172/JCI111721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dharmsathaphorn K., McRoberts J. A., Mandel K. G., Tisdale L. D., Masui H. A human colonic tumor cell line that maintains vectorial electrolyte transport. Am J Physiol. 1984 Feb;246(2 Pt 1):G204–G208. doi: 10.1152/ajpgi.1984.246.2.G204. [DOI] [PubMed] [Google Scholar]
  15. Field M., Rao M. C., Chang E. B. Intestinal electrolyte transport and diarrheal disease (1). N Engl J Med. 1989 Sep 21;321(12):800–806. doi: 10.1056/NEJM198909213211206. [DOI] [PubMed] [Google Scholar]
  16. Field M., Rao M. C., Chang E. B. Intestinal electrolyte transport and diarrheal disease (2) N Engl J Med. 1989 Sep 28;321(13):879–883. doi: 10.1056/NEJM198909283211307. [DOI] [PubMed] [Google Scholar]
  17. Grasl M., Turnheim K. Stimulation of electrolyte secretion in rabbit colon by adenosine. J Physiol. 1984 Jan;346:93–110. doi: 10.1113/jphysiol.1984.sp015009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hecht G., Pothoulakis C., LaMont J. T., Madara J. L. Clostridium difficile toxin A perturbs cytoskeletal structure and tight junction permeability of cultured human intestinal epithelial monolayers. J Clin Invest. 1988 Nov;82(5):1516–1524. doi: 10.1172/JCI113760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. KOBOLD E. E., THAL A. P. QUANTITATION AND IDENTIFICATION OF VASOACTIVE SUBSTANCES LIBERATED DURING VARIOUS TYPES OF EXPERIMENTAL AND CLINICAL INTESTINAL ISCHEMIA. Surg Gynecol Obstet. 1963 Sep;117:315–322. [PubMed] [Google Scholar]
  20. Kelley G. G., Aassar O. S., Forrest J. N., Jr Endogenous adenosine is an autacoid feedback inhibitor of chloride transport in the shark rectal gland. J Clin Invest. 1991 Dec;88(6):1933–1939. doi: 10.1172/JCI115517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Madara J. L., Parkos C., Colgan S., MacLeod R. J., Nash S., Matthews J., Delp C., Lencer W. Cl- secretion in a model intestinal epithelium induced by a neutrophil-derived secretagogue. J Clin Invest. 1992 Jun;89(6):1938–1944. doi: 10.1172/JCI115800. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Madara J. L., Patapoff T. W., Gillece-Castro B., Colgan S. P., Parkos C. A., Delp C., Mrsny R. J. 5'-adenosine monophosphate is the neutrophil-derived paracrine factor that elicits chloride secretion from T84 intestinal epithelial cell monolayers. J Clin Invest. 1993 May;91(5):2320–2325. doi: 10.1172/JCI116462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Madara J. L., Stafford J., Barenberg D., Carlson S. Functional coupling of tight junctions and microfilaments in T84 monolayers. Am J Physiol. 1988 Mar;254(3 Pt 1):G416–G423. doi: 10.1152/ajpgi.1988.254.3.G416. [DOI] [PubMed] [Google Scholar]
  24. Matsumoto S. S., Raivio K. O., Seegmiller J. E. Adenine nucleotide degradation during energy depletion in human lymphoblasts. Adenosine accumulation and adenylate energy charge correlation. J Biol Chem. 1979 Sep 25;254(18):8956–8962. [PubMed] [Google Scholar]
  25. Matthews J. B., Awtrey C. S., Hecht G., Tally K. J., Thompson R. S., Madara J. L. Phorbol ester sequentially downregulates cAMP-regulated basolateral and apical Cl- transport pathways in T84 cells. Am J Physiol. 1993 Oct;265(4 Pt 1):C1109–C1117. doi: 10.1152/ajpcell.1993.265.4.C1109. [DOI] [PubMed] [Google Scholar]
  26. Matthews J. B., Awtrey C. S., Thompson R., Hung T., Tally K. J., Madara J. L. Na(+)-K(+)-2Cl- cotransport and Cl- secretion evoked by heat-stable enterotoxin is microfilament dependent in T84 cells. Am J Physiol. 1993 Aug;265(2 Pt 1):G370–G378. doi: 10.1152/ajpgi.1993.265.2.G370. [DOI] [PubMed] [Google Scholar]
  27. Matthews J. B., Smith J. A., Tally K. J., Menconi M. J., Nguyen H., Fink M. P. Chemical hypoxia increases junctional permeability and activates electrogenic ion transport in human intestinal epithelial monolayers. Surgery. 1994 Aug;116(2):150–158. [PubMed] [Google Scholar]
  28. McKay D. M., Perdue M. H. Intestinal epithelial function: the case for immunophysiological regulation. Cells and mediators (1). Dig Dis Sci. 1993 Aug;38(8):1377–1387. doi: 10.1007/BF01308592. [DOI] [PubMed] [Google Scholar]
  29. Miller W. L., Thomas R. A., Berne R. M., Rubio R. Adenosine production in the ischemic kidney. Circ Res. 1978 Sep;43(3):390–397. doi: 10.1161/01.res.43.3.390. [DOI] [PubMed] [Google Scholar]
  30. Modlin I. M., Bloom S. R., Mitchell S. Plasma vasoactive intestinal polypeptide (VIP) levels and intestinal ischaemia. Experientia. 1978 Apr 15;34(4):535–536. doi: 10.1007/BF01935976. [DOI] [PubMed] [Google Scholar]
  31. Mohamedali K. A., Guicherit O. M., Kellems R. E., Rudolph F. B. The highest levels of purine catabolic enzymes in mice are present in the proximal small intestine. J Biol Chem. 1993 Nov 5;268(31):23728–23733. [PubMed] [Google Scholar]
  32. Nathans G. R., Chang D., Deuel T. F. AMP deaminase from human erythrocytes. Methods Enzymol. 1978;51:497–502. doi: 10.1016/s0076-6879(78)51068-9. [DOI] [PubMed] [Google Scholar]
  33. Parkos C. A., Colgan S. P., Delp C., Arnaout M. A., Madara J. L. Neutrophil migration across a cultured epithelial monolayer elicits a biphasic resistance response representing sequential effects on transcellular and paracellular pathways. J Cell Biol. 1992 May;117(4):757–764. doi: 10.1083/jcb.117.4.757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Plagemann P. G., Wohlhueter R. M., Kraupp M. Adenine nucleotide metabolism and nucleoside transport in human erythrocytes under ATP depletion conditions. Biochim Biophys Acta. 1985 Jul 11;817(1):51–60. doi: 10.1016/0005-2736(85)90067-7. [DOI] [PubMed] [Google Scholar]
  35. Robinson J. W., Menge H., Sepúlveda F. V., Cobo F., Mirkovitch V. The functional response of the dog ileum to one hour's ischaemia. Clin Sci Mol Med. 1976 Feb;50(2):115–122. doi: 10.1042/cs0500115. [DOI] [PubMed] [Google Scholar]
  36. Robinson J. W., Mirkovitch V., Winistörfer B., Saegesser F. Response of the intestinal mucosa to ischaemia. Gut. 1981 Jun;22(6):512–527. doi: 10.1136/gut.22.6.512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Robinson J. W., Winistörfer B., Mirkovitch V. Source of net water and electrolyte loss following intestinal ischaemia. Res Exp Med (Berl) 1980;176(3):263–275. doi: 10.1007/BF01855846. [DOI] [PubMed] [Google Scholar]
  38. Schneider J. R., Foker J. E., Macnab J. R., Marquardt C. A., Cronenwett J. L. Glucagon effect on postischemic recovery of intestinal energy metabolism. J Surg Res. 1994 Feb;56(2):123–129. doi: 10.1006/jsre.1994.1021. [DOI] [PubMed] [Google Scholar]
  39. Sheridan A. M., Schwartz J. H., Kroshian V. M., Tercyak A. M., Laraia J., Masino S., Lieberthal W. Renal mouse proximal tubular cells are more susceptible than MDCK cells to chemical anoxia. Am J Physiol. 1993 Sep;265(3 Pt 2):F342–F350. doi: 10.1152/ajprenal.1993.265.3.F342. [DOI] [PubMed] [Google Scholar]
  40. Shryock J. C., Rubio R., Berne R. M. Release of adenosine from pig aortic endothelial cells during hypoxia and metabolic inhibition. Am J Physiol. 1988 Feb;254(2 Pt 2):H223–H229. doi: 10.1152/ajpheart.1988.254.2.H223. [DOI] [PubMed] [Google Scholar]
  41. Strohmeier G. R., Reppert S. M., Lencer W. I., Madara J. L. The A2b adenosine receptor mediates cAMP responses to adenosine receptor agonists in human intestinal epithelia. J Biol Chem. 1995 Feb 3;270(5):2387–2394. doi: 10.1074/jbc.270.5.2387. [DOI] [PubMed] [Google Scholar]
  42. Tamai H., Gaginella T. S., Kachur J. F., Musch M. W., Chang E. B. Ca-mediated stimulation of Cl secretion by reactive oxygen metabolites in human colonic T84 cells. J Clin Invest. 1992 Jan;89(1):301–307. doi: 10.1172/JCI115576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Vincent M. F., Van den Berghe G., Hers H. G. The pathway of adenine nucleotide catabolism and its control in isolated rat hepatocytes subjected to anoxia. Biochem J. 1982 Jan 15;202(1):117–123. doi: 10.1042/bj2020117. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES