Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1995 Jul;96(1):260–272. doi: 10.1172/JCI118030

Hepatic overexpression of bovine scavenger receptor type I in transgenic mice prevents diet-induced hyperbetalipoproteinemia.

S Wölle 1, D P Via 1, L Chan 1, J A Cornicelli 1, C L Bisgaier 1
PMCID: PMC185197  PMID: 7615795

Abstract

Hepatic scavenger receptors (SR) may play a protective role by clearing modified lipoproteins before they target the artery wall. To gain insight into this hypothesized function, transgenic mice expressing hepatic bovine SR (TgSR) were created and studied when fed chow, and during diet-induced hyperlipidemia. SR overexpression resulted in extensive hepatic parenchymal cell uptake of fluorescently labeled acetylated human low density lipoprotein (DiI ac-hLDL) and a twofold increase in 125I-acetylated-LDL clearance. Food intake and cholesterol absorption was indistinguishable between control and TgSR mice. In chow-fed mice, lipoprotein cholesterol was similar in control and TgSR mice. However, on a 3-wk high fat/cholesterol (HFHC) diet, the rise in apoB containing lipoproteins was suppressed in TgSR+/- and TgSR+/+ mice. The rise in HDL was similar in control and TgSR+/- mice, but significantly elevated in the TgSR+/+ mice. Overall, on chow, the ratio of apo-B containing lipoprotein cholesterol to HDL cholesterol was similar for all groups (control = 0.33; TgSR+/- = 0.32; TgSR+/+ = 0.38). However, after 3 wk on the HFHC diet, this ratio was markedly higher in control (2.34 +/- 0.21) than in either TgSR+/- (1.00 +/- 0.24) or TgSR+/+ (1.00 +/- 0.19) mice. In TgSR+/- mice, hepatic cholesteryl esters were reduced by 59%, 7 alpha-hydroxylase mRNA levels were elevated twofold, and a significant increase in fecal bile acid flux was observed after the 3-wk HFHC diet. These results suggest SR may play a protective role in liver by preventing diet-induced increases in apoB containing lipoproteins.

Full text

PDF
260

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aalto-Setälä K., Bisgaier C. L., Ho A., Kieft K. A., Traber M. G., Kayden H. J., Ramakrishnan R., Walsh A., Essenburg A. D., Breslow J. L. Intestinal expression of human apolipoprotein A-IV in transgenic mice fails to influence dietary lipid absorption or feeding behavior. J Clin Invest. 1994 Apr;93(4):1776–1786. doi: 10.1172/JCI117163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Acton S., Resnick D., Freeman M., Ekkel Y., Ashkenas J., Krieger M. The collagenous domains of macrophage scavenger receptors and complement component C1q mediate their similar, but not identical, binding specificities for polyanionic ligands. J Biol Chem. 1993 Feb 15;268(5):3530–3537. [PubMed] [Google Scholar]
  3. Allain C. C., Poon L. S., Chan C. S., Richmond W., Fu P. C. Enzymatic determination of total serum cholesterol. Clin Chem. 1974 Apr;20(4):470–475. [PubMed] [Google Scholar]
  4. Beher W. T., Stradnieks S., Lin G. J., Sanfield J. Rapid analysis of human fecal bile acids. Steroids. 1981 Sep;38(3):281–295. doi: 10.1016/0039-128x(81)90064-7. [DOI] [PubMed] [Google Scholar]
  5. Bickel P. E., Freeman M. W. Rabbit aortic smooth muscle cells express inducible macrophage scavenger receptor messenger RNA that is absent from endothelial cells. J Clin Invest. 1992 Oct;90(4):1450–1457. doi: 10.1172/JCI116012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bisgaier C. L., Siebenkas M. V., Williams K. J. Effects of apolipoproteins A-IV and A-I on the uptake of phospholipid liposomes by hepatocytes. J Biol Chem. 1989 Jan 15;264(2):862–866. [PubMed] [Google Scholar]
  7. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  8. Brinster R. L., Palmiter R. D. Introduction of genes into the germ line of animals. Harvey Lect. 1984 1985;80:1–38. [PMC free article] [PubMed] [Google Scholar]
  9. Brown M. S., Goldstein J. L. Atherosclerosis. Scavenging for receptors. Nature. 1990 Feb 8;343(6258):508–509. doi: 10.1038/343508a0. [DOI] [PubMed] [Google Scholar]
  10. Brown M. S., Goldstein J. L., Krieger M., Ho Y. K., Anderson R. G. Reversible accumulation of cholesteryl esters in macrophages incubated with acetylated lipoproteins. J Cell Biol. 1979 Sep;82(3):597–613. doi: 10.1083/jcb.82.3.597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Brown M. S., Goldstein J. L. Lipoprotein metabolism in the macrophage: implications for cholesterol deposition in atherosclerosis. Annu Rev Biochem. 1983;52:223–261. doi: 10.1146/annurev.bi.52.070183.001255. [DOI] [PubMed] [Google Scholar]
  12. Carew T. E. Role of biologically modified low-density lipoprotein in atherosclerosis. Am J Cardiol. 1989 Oct 3;64(13):18G–22G. doi: 10.1016/0002-9149(89)90951-x. [DOI] [PubMed] [Google Scholar]
  13. Christie W. W. Rapid separation and quantification of lipid classes by high performance liquid chromatography and mass (light-scattering) detection. J Lipid Res. 1985 Apr;26(4):507–512. [PubMed] [Google Scholar]
  14. Dresel H. A., Friedrich E., Via D. P., Schettler G., Sinn H. Characterization of binding sites for acetylated low density lipoprotein in the rat liver in vivo and in vitro. EMBO J. 1985 May;4(5):1157–1162. doi: 10.1002/j.1460-2075.1985.tb03754.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Dresel H. A., Friedrich E., Via D. P., Sinn H., Ziegler R., Schettler G. Binding of acetylated low density lipoprotein and maleylated bovine serum albumin to the rat liver: one or two receptors? EMBO J. 1987 Feb;6(2):319–326. doi: 10.1002/j.1460-2075.1987.tb04757.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Dunne D. W., Resnick D., Greenberg J., Krieger M., Joiner K. A. The type I macrophage scavenger receptor binds to gram-positive bacteria and recognizes lipoteichoic acid. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1863–1867. doi: 10.1073/pnas.91.5.1863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Eisenberg S., Patsch J. R., Sparrow J. T., Gotto A. M., Olivecrona T. Very low density lipoprotein. Removal of Apolipoproteins C-II and C-III-1 during lipolysis in vitro. J Biol Chem. 1979 Dec 25;254(24):12603–12608. [PubMed] [Google Scholar]
  18. Esbach S., Pieters M. N., van der Boom J., Schouten D., van der Heyde M. N., Roholl P. J., Brouwer A., van Berkel T. J., Knook D. L. Visualization of the uptake and processing of oxidized low-density lipoproteins in human and rat liver. Hepatology. 1993 Sep;18(3):537–545. [PubMed] [Google Scholar]
  19. Eskild W., Kindberg G. M., Smedsrod B., Blomhoff R., Norum K. R., Berg T. Intracellular transport of formaldehyde-treated serum albumin in liver endothelial cells after uptake via scavenger receptors. Biochem J. 1989 Mar 1;258(2):511–520. doi: 10.1042/bj2580511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Fogelman A. M., Shechter I., Seager J., Hokom M., Child J. S., Edwards P. A. Malondialdehyde alteration of low density lipoproteins leads to cholesteryl ester accumulation in human monocyte-macrophages. Proc Natl Acad Sci U S A. 1980 Apr;77(4):2214–2218. doi: 10.1073/pnas.77.4.2214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Freeman M. W. Macrophage scavenger receptors. Curr Opin Lipidol. 1994 Apr;5(2):143–148. doi: 10.1097/00041433-199404000-00011. [DOI] [PubMed] [Google Scholar]
  22. Freeman M., Ashkenas J., Rees D. J., Kingsley D. M., Copeland N. G., Jenkins N. A., Krieger M. An ancient, highly conserved family of cysteine-rich protein domains revealed by cloning type I and type II murine macrophage scavenger receptors. Proc Natl Acad Sci U S A. 1990 Nov;87(22):8810–8814. doi: 10.1073/pnas.87.22.8810. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Goldstein J. L., Ho Y. K., Basu S. K., Brown M. S. Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad Sci U S A. 1979 Jan;76(1):333–337. doi: 10.1073/pnas.76.1.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. HAVEL R. J., EDER H. A., BRAGDON J. H. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest. 1955 Sep;34(9):1345–1353. doi: 10.1172/JCI103182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Haberland M. E., Fogelman A. M. Scavenger receptor-mediated recognition of maleyl bovine plasma albumin and the demaleylated protein in human monocyte macrophages. Proc Natl Acad Sci U S A. 1985 May;82(9):2693–2697. doi: 10.1073/pnas.82.9.2693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Hampton R. Y., Golenbock D. T., Penman M., Krieger M., Raetz C. R. Recognition and plasma clearance of endotoxin by scavenger receptors. Nature. 1991 Jul 25;352(6333):342–344. doi: 10.1038/352342a0. [DOI] [PubMed] [Google Scholar]
  27. Hodis H. N., Chauhan A., Hashimoto S., Crawford D. W., Sevanian A. Probucol reduces plasma and aortic wall oxysterol levels in cholesterol fed rabbits independently of its plasma cholesterol lowering effect. Atherosclerosis. 1992 Oct;96(2-3):125–134. doi: 10.1016/0021-9150(92)90059-p. [DOI] [PubMed] [Google Scholar]
  28. Hodis H. N., Crawford D. W., Sevanian A. Cholesterol feeding increases plasma and aortic tissue cholesterol oxide levels in parallel: further evidence for the role of cholesterol oxidation in atherosclerosis. Atherosclerosis. 1991 Aug;89(2-3):117–126. doi: 10.1016/0021-9150(91)90051-4. [DOI] [PubMed] [Google Scholar]
  29. Hodis H. N., Kramsch D. M., Avogaro P., Bittolo-Bon G., Cazzolato G., Hwang J., Peterson H., Sevanian A. Biochemical and cytotoxic characteristics of an in vivo circulating oxidized low density lipoprotein (LDL-). J Lipid Res. 1994 Apr;35(4):669–677. [PubMed] [Google Scholar]
  30. Horiuchi S., Murakami M., Takata K., Morino Y. Scavenger receptor for aldehyde-modified proteins. J Biol Chem. 1986 Apr 15;261(11):4962–4966. [PubMed] [Google Scholar]
  31. Horiuchi S., Takata K., Maeda H., Morino Y. Scavenger function of sinusoidal liver cells. Acetylated low-density lipoprotein is endocytosed via a route distinct from formaldehyde-treated serum albumin. J Biol Chem. 1985 Jan 10;260(1):53–56. [PubMed] [Google Scholar]
  32. Idzerda R. L., Behringer R. R., Theisen M., Huggenvik J. I., McKnight G. S., Brinster R. L. Expression from the transferrin gene promoter in transgenic mice. Mol Cell Biol. 1989 Nov;9(11):5154–5162. doi: 10.1128/mcb.9.11.5154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Ishibashi S., Brown M. S., Goldstein J. L., Gerard R. D., Hammer R. E., Herz J. Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. J Clin Invest. 1993 Aug;92(2):883–893. doi: 10.1172/JCI116663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Ishibashi S., Goldstein J. L., Brown M. S., Herz J., Burns D. K. Massive xanthomatosis and atherosclerosis in cholesterol-fed low density lipoprotein receptor-negative mice. J Clin Invest. 1994 May;93(5):1885–1893. doi: 10.1172/JCI117179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Kieft K. A., Bocan T. M., Krause B. R. Rapid on-line determination of cholesterol distribution among plasma lipoproteins after high-performance gel filtration chromatography. J Lipid Res. 1991 May;32(5):859–866. [PubMed] [Google Scholar]
  36. Kodama T., Freeman M., Rohrer L., Zabrecky J., Matsudaira P., Krieger M. Type I macrophage scavenger receptor contains alpha-helical and collagen-like coiled coils. Nature. 1990 Feb 8;343(6258):531–535. doi: 10.1038/343531a0. [DOI] [PubMed] [Google Scholar]
  37. Kozak M. Bifunctional messenger RNAs in eukaryotes. Cell. 1986 Nov 21;47(4):481–483. doi: 10.1016/0092-8674(86)90609-4. [DOI] [PubMed] [Google Scholar]
  38. Kozak M. The scanning model for translation: an update. J Cell Biol. 1989 Feb;108(2):229–241. doi: 10.1083/jcb.108.2.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Krieger M. Molecular flypaper and atherosclerosis: structure of the macrophage scavenger receptor. Trends Biochem Sci. 1992 Apr;17(4):141–146. doi: 10.1016/0968-0004(92)90322-z. [DOI] [PubMed] [Google Scholar]
  40. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  41. Mullis K. B., Faloona F. A. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol. 1987;155:335–350. doi: 10.1016/0076-6879(87)55023-6. [DOI] [PubMed] [Google Scholar]
  42. Nagelkerke J. F., Barto K. P., van Berkel T. J. In vivo and in vitro uptake and degradation of acetylated low density lipoprotein by rat liver endothelial, Kupffer, and parenchymal cells. J Biol Chem. 1983 Oct 25;258(20):12221–12227. [PubMed] [Google Scholar]
  43. Nakashima Y., Plump A. S., Raines E. W., Breslow J. L., Ross R. ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler Thromb. 1994 Jan;14(1):133–140. doi: 10.1161/01.atv.14.1.133. [DOI] [PubMed] [Google Scholar]
  44. Nenseter M. S., Gudmundsen O., Malterud K. E., Berg T., Drevon C. A. Effect of cholesterol feeding on the susceptibility of lipoproteins to oxidative modification. Biochim Biophys Acta. 1994 Jul 14;1213(2):207–214. doi: 10.1016/0005-2760(94)90028-0. [DOI] [PubMed] [Google Scholar]
  45. Paigen B., Morrow A., Brandon C., Mitchell D., Holmes P. Variation in susceptibility to atherosclerosis among inbred strains of mice. Atherosclerosis. 1985 Oct;57(1):65–73. doi: 10.1016/0021-9150(85)90138-8. [DOI] [PubMed] [Google Scholar]
  46. Palinski W., Ord V. A., Plump A. S., Breslow J. L., Steinberg D., Witztum J. L. ApoE-deficient mice are a model of lipoprotein oxidation in atherogenesis. Demonstration of oxidation-specific epitopes in lesions and high titers of autoantibodies to malondialdehyde-lysine in serum. Arterioscler Thromb. 1994 Apr;14(4):605–616. doi: 10.1161/01.atv.14.4.605. [DOI] [PubMed] [Google Scholar]
  47. Palinski W., Rosenfeld M. E., Ylä-Herttuala S., Gurtner G. C., Socher S. S., Butler S. W., Parthasarathy S., Carew T. E., Steinberg D., Witztum J. L. Low density lipoprotein undergoes oxidative modification in vivo. Proc Natl Acad Sci U S A. 1989 Feb;86(4):1372–1376. doi: 10.1073/pnas.86.4.1372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Pearson A. M., Rich A., Krieger M. Polynucleotide binding to macrophage scavenger receptors depends on the formation of base-quartet-stabilized four-stranded helices. J Biol Chem. 1993 Feb 15;268(5):3546–3554. [PubMed] [Google Scholar]
  49. Penman M., Lux A., Freedman N. J., Rohrer L., Ekkel Y., McKinstry H., Resnick D., Krieger M. The type I and type II bovine scavenger receptors expressed in Chinese hamster ovary cells are trimeric proteins with collagenous triple helical domains comprising noncovalently associated monomers and Cys83-disulfide-linked dimers. J Biol Chem. 1991 Dec 15;266(35):23985–23993. [PubMed] [Google Scholar]
  50. Peterson J., Bengtsson-Olivecrona G., Olivecrona T. Mouse preheparin plasma contains high levels of hepatic lipase with low affinity for heparin. Biochim Biophys Acta. 1986 Aug 14;878(1):65–70. doi: 10.1016/0005-2760(86)90344-9. [DOI] [PubMed] [Google Scholar]
  51. Pitas R. E., Boyles J., Mahley R. W., Bissell D. M. Uptake of chemically modified low density lipoproteins in vivo is mediated by specific endothelial cells. J Cell Biol. 1985 Jan;100(1):103–117. doi: 10.1083/jcb.100.1.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Pitas R. E. Expression of the acetyl low density lipoprotein receptor by rabbit fibroblasts and smooth muscle cells. Up-regulation by phorbol esters. J Biol Chem. 1990 Jul 25;265(21):12722–12727. [PubMed] [Google Scholar]
  53. Pitas R. E., Friera A., McGuire J., Dejager S. Further characterization of the acetyl LDL (scavenger) receptor expressed by rabbit smooth muscle cells and fibroblasts. Arterioscler Thromb. 1992 Nov;12(11):1235–1244. doi: 10.1161/01.atv.12.11.1235. [DOI] [PubMed] [Google Scholar]
  54. Plump A. S., Smith J. D., Hayek T., Aalto-Setälä K., Walsh A., Verstuyft J. G., Rubin E. M., Breslow J. L. Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell. 1992 Oct 16;71(2):343–353. doi: 10.1016/0092-8674(92)90362-g. [DOI] [PubMed] [Google Scholar]
  55. Qiao J. H., Xie P. Z., Fishbein M. C., Kreuzer J., Drake T. A., Demer L. L., Lusis A. J. Pathology of atheromatous lesions in inbred and genetically engineered mice. Genetic determination of arterial calcification. Arterioscler Thromb. 1994 Sep;14(9):1480–1497. doi: 10.1161/01.atv.14.9.1480. [DOI] [PubMed] [Google Scholar]
  56. Quinn M. T., Parthasarathy S., Fong L. G., Steinberg D. Oxidatively modified low density lipoproteins: a potential role in recruitment and retention of monocyte/macrophages during atherogenesis. Proc Natl Acad Sci U S A. 1987 May;84(9):2995–2998. doi: 10.1073/pnas.84.9.2995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Reddick R. L., Zhang S. H., Maeda N. Atherosclerosis in mice lacking apo E. Evaluation of lesional development and progression. Arterioscler Thromb. 1994 Jan;14(1):141–147. doi: 10.1161/01.atv.14.1.141. [DOI] [PubMed] [Google Scholar]
  58. Rohrer L., Freeman M., Kodama T., Penman M., Krieger M. Coiled-coil fibrous domains mediate ligand binding by macrophage scavenger receptor type II. Nature. 1990 Feb 8;343(6258):570–572. doi: 10.1038/343570a0. [DOI] [PubMed] [Google Scholar]
  59. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
  60. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Schaefer E. J., Wetzel M. G., Bengtsson G., Scow R. O., Brewer H. B., Jr, Olivecrona T. Transfer of human lymph chylomicron constituents to other lipoprotein density fractions during in vitro lipolysis. J Lipid Res. 1982 Dec;23(9):1259–1273. [PubMed] [Google Scholar]
  62. Slayback J. R., Cheung L. W., Geyer R. P. Quantitative extraction of microgram amounts of lipid from cultured human cells. Anal Biochem. 1977 Dec;83(2):372–384. doi: 10.1016/0003-2697(77)90046-x. [DOI] [PubMed] [Google Scholar]
  63. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  64. Stehle G., Friedrich E. A., Sinn H., Wunder A., Harenberg J., Dempfle C. E., Maier-Borst W., Heene D. L. Hepatic uptake of a modified low molecular weight heparin in rats. J Clin Invest. 1992 Nov;90(5):2110–2116. doi: 10.1172/JCI116095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Steinberg D., Parthasarathy S., Carew T. E., Khoo J. C., Witztum J. L. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med. 1989 Apr 6;320(14):915–924. doi: 10.1056/NEJM198904063201407. [DOI] [PubMed] [Google Scholar]
  66. Steinbrecher U. P., Lougheed M., Kwan W. C., Dirks M. Recognition of oxidized low density lipoprotein by the scavenger receptor of macrophages results from derivatization of apolipoprotein B by products of fatty acid peroxidation. J Biol Chem. 1989 Sep 15;264(26):15216–15223. [PubMed] [Google Scholar]
  67. Takata K., Horiuchi S., Araki N., Shiga M., Saitoh M., Morino Y. Endocytic uptake of nonenzymatically glycosylated proteins is mediated by a scavenger receptor for aldehyde-modified proteins. J Biol Chem. 1988 Oct 15;263(29):14819–14825. [PubMed] [Google Scholar]
  68. Takata K., Horiuchi S., Morino Y. Scavenger receptor-mediated recognition of maleylated albumin and its relation to subsequent endocytic degradation. Biochim Biophys Acta. 1989 Sep 18;984(3):273–280. doi: 10.1016/0005-2736(89)90293-9. [DOI] [PubMed] [Google Scholar]
  69. Tall A. R. Plasma cholesteryl ester transfer protein. J Lipid Res. 1993 Aug;34(8):1255–1274. [PubMed] [Google Scholar]
  70. Tall A. R., Small D. M. Plasma high-density lipoproteins. N Engl J Med. 1978 Nov 30;299(22):1232–1236. doi: 10.1056/NEJM197811302992207. [DOI] [PubMed] [Google Scholar]
  71. Tam S. P., Breckenridge W. C. Apolipoprotein and lipid distribution between vesicles and HDL-like particles formed during lipolysis of human very low density lipoproteins by perfused rat heart. J Lipid Res. 1983 Oct;24(10):1343–1357. [PubMed] [Google Scholar]
  72. Tokuda H., Masuda S., Takakura Y., Sezaki H., Hashida M. Specific uptake of succinylated proteins via a scavenger receptor-mediated mechanism in cultured brain microvessel endothelial cells. Biochem Biophys Res Commun. 1993 Oct 15;196(1):18–24. doi: 10.1006/bbrc.1993.2210. [DOI] [PubMed] [Google Scholar]
  73. Van Berkel T. J., De Rijke Y. B., Kruijt J. K. Different fate in vivo of oxidatively modified low density lipoprotein and acetylated low density lipoprotein in rats. Recognition by various scavenger receptors on Kupffer and endothelial liver cells. J Biol Chem. 1991 Feb 5;266(4):2282–2289. [PubMed] [Google Scholar]
  74. Via D. P., Dresel H. A., Gotto A. M., Jr Isolation and assay of the Ac-LDL receptor. Methods Enzymol. 1986;129:216–226. doi: 10.1016/0076-6879(86)29071-0. [DOI] [PubMed] [Google Scholar]
  75. Via D. P., Kempner E. S., Pons L., Fanslow A. E., Vignale S., Smith L. C., Gotto A. M., Jr, Dresel H. A. Mouse macrophage receptor for acetylated low density lipoprotein: demonstration of a fully functional subunit in the membrane and with purified receptor. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):6780–6784. doi: 10.1073/pnas.89.15.6780. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Voyta J. C., Via D. P., Butterfield C. E., Zetter B. R. Identification and isolation of endothelial cells based on their increased uptake of acetylated-low density lipoprotein. J Cell Biol. 1984 Dec;99(6):2034–2040. doi: 10.1083/jcb.99.6.2034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Wright T. L., Roll F. J., Jones A. L., Weisiger R. A. Uptake and metabolism of polymerized albumin by rat liver. Role of the scavenger receptor. Gastroenterology. 1988 Feb;94(2):443–452. doi: 10.1016/0016-5085(88)90435-0. [DOI] [PubMed] [Google Scholar]
  78. Zhang H., Yang Y., Steinbrecher U. P. Structural requirements for the binding of modified proteins to the scavenger receptor of macrophages. J Biol Chem. 1993 Mar 15;268(8):5535–5542. [PubMed] [Google Scholar]
  79. Zhang S. H., Reddick R. L., Piedrahita J. A., Maeda N. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science. 1992 Oct 16;258(5081):468–471. doi: 10.1126/science.1411543. [DOI] [PubMed] [Google Scholar]
  80. de Rijke Y. B., van Berkel T. J. Rat liver Kupffer and endothelial cells express different binding proteins for modified low density lipoproteins. Kupffer cells express a 95-kDa membrane protein as a specific binding site for oxidized low density lipoproteins. J Biol Chem. 1994 Jan 14;269(2):824–827. [PubMed] [Google Scholar]
  81. de Vries H. E., Kuiper J., de Boer A. G., van Berkel T. J., Breimer D. D. Characterization of the scavenger receptor on bovine cerebral endothelial cells in vitro. J Neurochem. 1993 Nov;61(5):1813–1821. doi: 10.1111/j.1471-4159.1993.tb09821.x. [DOI] [PubMed] [Google Scholar]
  82. van Berkel T. J., Nagelkerke J. F., Kruijt J. K. The effect of Ca2+ and the trifluoperazine on the processing of human acetylated low density lipoprotein by non-parenchymal liver cells. FEBS Lett. 1981 Sep 14;132(1):61–66. doi: 10.1016/0014-5793(81)80427-9. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES