Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1995 Jul;96(1):354–360. doi: 10.1172/JCI118041

Blood pressure lowering by pioglitazone. Evidence for a direct vascular effect.

T A Buchanan 1, W P Meehan 1, Y Y Jeng 1, D Yang 1, T M Chan 1, J L Nadler 1, S Scott 1, R K Rude 1, W A Hsueh 1
PMCID: PMC185207  PMID: 7615805

Abstract

To examine potential mechanisms for the blood pressure-lowering action of the thiazolidinedione compound, pioglitazone (PIO), we studied the effects of the drug on blood pressure and insulin action in vivo and on vascular tissue in vitro. In vivo, PIO lowered blood pressure in fructose-fed and chow-fed rats to an extent that could not be explained by alterations in fasting plasma insulin or free magnesium concentrations or by alterations in whole-body insulin sensitivity. In vitro, PIO caused significant blunting of the contractile responses of aortic rings to NE, arginine vasopressin (AVP), and potassium chloride; the blunting of responses to NE was maintained after removal of the endothelium. To assess the potential importance of extracellular calcium to the vasodepressor effect of PIO, we measured contractile responses to NE in the absence of calcium, and then after acute restoration of calcium in the presence of NE. PIO had no effect on the contractile response in the absence of calcium. By contrast, PIO blunted by 42% the contractile response that occurred when the extracellular calcium supply was acutely restored in the presence of NE, suggesting that the blunting was mediated by blockade of calcium uptake by vascular smooth muscle. Such an effect was confirmed in cultured a7r5 vascular smooth muscle cells, which exhibited a brisk increase in intracellular calcium in response to AVP that was blocked by PIO in a dose-dependent fashion. Our data indicate that PIO has a direct vascular effect that appears to be mediated at least in part by inhibition of agonist-mediated calcium uptake by vascular smooth muscle. The direct vascular effect may contribute to the blood pressure-lowering actions of PIO in vivo, because that effect could not be explained by alterations in whole-body insulin sensitivity.

Full text

PDF
354

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balon T. W., Jasman A., Scott S., Meehan W. P., Rude R. K., Nadler J. L. Dietary magnesium prevents fructose-induced insulin insensitivity in rats. Hypertension. 1994 Jun;23(6 Pt 2):1036–1039. doi: 10.1161/01.hyp.23.6.1036. [DOI] [PubMed] [Google Scholar]
  2. Buchanan T. A., Sipos G. F., Madrilejo N., Liu C., Campese V. M. Hypertension without peripheral insulin resistance in spontaneously hypertensive rats. Am J Physiol. 1992 Jan;262(1 Pt 1):E14–E19. doi: 10.1152/ajpendo.1992.262.1.E14. [DOI] [PubMed] [Google Scholar]
  3. Buchanan T. A., Thawani H., Kades W., Modrall J. G., Weaver F. A., Laurel C., Poppiti R., Xiang A., Hsueh W. Angiotensin II increases glucose utilization during acute hyperinsulinemia via a hemodynamic mechanism. J Clin Invest. 1993 Aug;92(2):720–726. doi: 10.1172/JCI116642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Byyny R. L., LoVerde M., Lloyd S., Mitchell W., Draznin B. Cytosolic calcium and insulin resistance in elderly patients with essential hypertension. Am J Hypertens. 1992 Jul;5(7):459–464. doi: 10.1093/ajh/5.7.459. [DOI] [PubMed] [Google Scholar]
  5. Capponi A. M., Lew P. D., Vallotton M. B. Cytosolic free calcium levels in monolayers of cultured rat aortic smooth muscle cells. Effects of angiotensin II and vasopressin. J Biol Chem. 1985 Jul 5;260(13):7836–7842. [PubMed] [Google Scholar]
  6. Dubey R. K., Zhang H. Y., Reddy S. R., Boegehold M. A., Kotchen T. A. Pioglitazone attenuates hypertension and inhibits growth of renal arteriolar smooth muscle in rats. Am J Physiol. 1993 Oct;265(4 Pt 2):R726–R732. doi: 10.1152/ajpregu.1993.265.4.R726. [DOI] [PubMed] [Google Scholar]
  7. Ferrannini E., Buzzigoli G., Bonadonna R., Giorico M. A., Oleggini M., Graziadei L., Pedrinelli R., Brandi L., Bevilacqua S. Insulin resistance in essential hypertension. N Engl J Med. 1987 Aug 6;317(6):350–357. doi: 10.1056/NEJM198708063170605. [DOI] [PubMed] [Google Scholar]
  8. Ginsberg H., Kimmerling G., Olefsky J. M., Reaven G. M. Demonstration of insulin resistance in untreated adult onset diabetic subjects with fasting hyperglycemia. J Clin Invest. 1975 Mar;55(3):454–461. doi: 10.1172/JCI107951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Herbert V., Lau K. S., Gottlieb C. W., Bleicher S. J. Coated charcoal immunoassay of insulin. J Clin Endocrinol Metab. 1965 Oct;25(10):1375–1384. doi: 10.1210/jcem-25-10-1375. [DOI] [PubMed] [Google Scholar]
  10. Hofmann C. A., Colca J. R. New oral thiazolidinedione antidiabetic agents act as insulin sensitizers. Diabetes Care. 1992 Aug;15(8):1075–1078. doi: 10.2337/diacare.15.8.1075. [DOI] [PubMed] [Google Scholar]
  11. Hofmann C. A., Edwards C. W., 3rd, Hillman R. M., Colca J. R. Treatment of insulin-resistant mice with the oral antidiabetic agent pioglitazone: evaluation of liver GLUT2 and phosphoenolpyruvate carboxykinase expression. Endocrinology. 1992 Feb;130(2):735–740. doi: 10.1210/endo.130.2.1733721. [DOI] [PubMed] [Google Scholar]
  12. Hofmann C., Lorenz K., Colca J. R. Glucose transport deficiency in diabetic animals is corrected by treatment with the oral antihyperglycemic agent pioglitazone. Endocrinology. 1991 Oct;129(4):1915–1925. doi: 10.1210/endo-129-4-1915. [DOI] [PubMed] [Google Scholar]
  13. Ikeda H., Taketomi S., Sugiyama Y., Shimura Y., Sohda T., Meguro K., Fujita T. Effects of pioglitazone on glucose and lipid metabolism in normal and insulin resistant animals. Arzneimittelforschung. 1990 Feb;40(2 Pt 1):156–162. [PubMed] [Google Scholar]
  14. Iwamoto Y., Kuzuya T., Matsuda A., Awata T., Kumakura S., Inooka G., Shiraishi I. Effect of new oral antidiabetic agent CS-045 on glucose tolerance and insulin secretion in patients with NIDDM. Diabetes Care. 1991 Nov;14(11):1083–1086. doi: 10.2337/diacare.14.11.1083. [DOI] [PubMed] [Google Scholar]
  15. Kemnitz J. W., Elson D. F., Roecker E. B., Baum S. T., Bergman R. N., Meglasson M. D. Pioglitazone increases insulin sensitivity, reduces blood glucose, insulin, and lipid levels, and lowers blood pressure, in obese, insulin-resistant rhesus monkeys. Diabetes. 1994 Feb;43(2):204–211. doi: 10.2337/diab.43.2.204. [DOI] [PubMed] [Google Scholar]
  16. Kolterman O. G., Gray R. S., Griffin J., Burstein P., Insel J., Scarlett J. A., Olefsky J. M. Receptor and postreceptor defects contribute to the insulin resistance in noninsulin-dependent diabetes mellitus. J Clin Invest. 1981 Oct;68(4):957–969. doi: 10.1172/JCI110350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Laakso M., Edelman S. V., Brechtel G., Baron A. D. Decreased effect of insulin to stimulate skeletal muscle blood flow in obese man. A novel mechanism for insulin resistance. J Clin Invest. 1990 Jun;85(6):1844–1852. doi: 10.1172/JCI114644. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lee M. K., Miles P. D., Khoursheed M., Gao K. M., Moossa A. R., Olefsky J. M. Metabolic effects of troglitazone on fructose-induced insulin resistance in the rat. Diabetes. 1994 Dec;43(12):1435–1439. doi: 10.2337/diab.43.12.1435. [DOI] [PubMed] [Google Scholar]
  19. Modan M., Halkin H., Almog S., Lusky A., Eshkol A., Shefi M., Shitrit A., Fuchs Z. Hyperinsulinemia. A link between hypertension obesity and glucose intolerance. J Clin Invest. 1985 Mar;75(3):809–817. doi: 10.1172/JCI111776. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nadler J. L., Buchanan T., Natarajan R., Antonipillai I., Bergman R., Rude R. Magnesium deficiency produces insulin resistance and increased thromboxane synthesis. Hypertension. 1993 Jun;21(6 Pt 2):1024–1029. doi: 10.1161/01.hyp.21.6.1024. [DOI] [PubMed] [Google Scholar]
  21. Nadler J., Scott S. Evidence that pioglitazone increases intracellular free magnesium concentration in freshly isolated rat adipocytes. Biochem Biophys Res Commun. 1994 Jul 15;202(1):416–421. doi: 10.1006/bbrc.1994.1944. [DOI] [PubMed] [Google Scholar]
  22. Ng L. L., Davies J. E., Ameen M. Intracellular free-magnesium levels in vascular smooth muscle and striated muscle cells of the spontaneously hypertensive rat. Metabolism. 1992 Jul;41(7):772–777. doi: 10.1016/0026-0495(92)90319-6. [DOI] [PubMed] [Google Scholar]
  23. Nolan J. J., Ludvik B., Beerdsen P., Joyce M., Olefsky J. Improvement in glucose tolerance and insulin resistance in obese subjects treated with troglitazone. N Engl J Med. 1994 Nov 3;331(18):1188–1193. doi: 10.1056/NEJM199411033311803. [DOI] [PubMed] [Google Scholar]
  24. Oakes N. D., Kennedy C. J., Jenkins A. B., Laybutt D. R., Chisholm D. J., Kraegen E. W. A new antidiabetic agent, BRL 49653, reduces lipid availability and improves insulin action and glucoregulation in the rat. Diabetes. 1994 Oct;43(10):1203–1210. doi: 10.2337/diab.43.10.1203. [DOI] [PubMed] [Google Scholar]
  25. Ohno Y., Suzuki H., Yamakawa H., Nakamura M., Otsuka K., Saruta T. Impaired insulin sensitivity in young, lean normotensive offspring of essential hypertensives: possible role of disturbed calcium metabolism. J Hypertens. 1993 Apr;11(4):421–426. doi: 10.1097/00004872-199304000-00013. [DOI] [PubMed] [Google Scholar]
  26. Pershadsingh H. A., Szollosi J., Benson S., Hyun W. C., Feuerstein B. G., Kurtz T. W. Effects of ciglitazone on blood pressure and intracellular calcium metabolism. Hypertension. 1993 Jun;21(6 Pt 2):1020–1023. doi: 10.1161/01.hyp.21.6.1020. [DOI] [PubMed] [Google Scholar]
  27. Resnick L. M., Altura B. T., Gupta R. K., Laragh J. H., Alderman M. H., Altura B. M. Intracellular and extracellular magnesium depletion in type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia. 1993 Aug;36(8):767–770. doi: 10.1007/BF00401149. [DOI] [PubMed] [Google Scholar]
  28. Resnick L. M., Gupta R. K., Gruenspan H., Alderman M. H., Laragh J. H. Hypertension and peripheral insulin resistance. Possible mediating role of intracellular free magnesium. Am J Hypertens. 1990 May;3(5 Pt 1):373–379. doi: 10.1093/ajh/3.5.373. [DOI] [PubMed] [Google Scholar]
  29. Resnick L. M. Ionic basis of hypertension, insulin resistance, vascular disease, and related disorders. The mechanism of "syndrome X". Am J Hypertens. 1993 Apr;6(4):123S–134S. doi: 10.1093/ajh/6.4s.123s. [DOI] [PubMed] [Google Scholar]
  30. Roberts D. C., West C. E., Redgrave T. G., Smith J. B. Plasma cholesterol concentration in normal and cholesterol-fed rabbits. Its variation and heritability. Atherosclerosis. 1974 May-Jun;19(3):369–380. doi: 10.1016/s0021-9150(74)80002-x. [DOI] [PubMed] [Google Scholar]
  31. Rude R., Manoogian C., Ehrlich L., DeRusso P., Ryzen E., Nadler J. Mechanisms of blood pressure regulation by magnesium in man. Magnesium. 1989;8(5-6):266–273. [PubMed] [Google Scholar]
  32. Shen D. C., Shieh S. M., Fuh M. M., Wu D. A., Chen Y. D., Reaven G. M. Resistance to insulin-stimulated-glucose uptake in patients with hypertension. J Clin Endocrinol Metab. 1988 Mar;66(3):580–583. doi: 10.1210/jcem-66-3-580. [DOI] [PubMed] [Google Scholar]
  33. Sugiyama Y., Shimura Y., Ikeda H. Effects of pioglitazone on hepatic and peripheral insulin resistance in Wistar fatty rats. Arzneimittelforschung. 1990 Apr;40(4):436–440. [PubMed] [Google Scholar]
  34. Suter S. L., Nolan J. J., Wallace P., Gumbiner B., Olefsky J. M. Metabolic effects of new oral hypoglycemic agent CS-045 in NIDDM subjects. Diabetes Care. 1992 Feb;15(2):193–203. doi: 10.2337/diacare.15.2.193. [DOI] [PubMed] [Google Scholar]
  35. Touyz R. M., Schiffrin E. L. The effect of angiotensin II on platelet intracellular free magnesium and calcium ionic concentrations in essential hypertension. J Hypertens. 1993 May;11(5):551–558. doi: 10.1097/00004872-199305000-00011. [DOI] [PubMed] [Google Scholar]
  36. Wolf G., Haberstroh U., Neilson E. G. Angiotensin II stimulates the proliferation and biosynthesis of type I collagen in cultured murine mesangial cells. Am J Pathol. 1992 Jan;140(1):95–107. [PMC free article] [PubMed] [Google Scholar]
  37. Wu H. Y., Jeng Y. Y., Yue C. J., Chyu K. Y., Hsueh W. A., Chan T. M. Endothelial-dependent vascular effects of insulin and insulin-like growth factor I in the perfused rat mesenteric artery and aortic ring. Diabetes. 1994 Aug;43(8):1027–1032. doi: 10.2337/diab.43.8.1027. [DOI] [PubMed] [Google Scholar]
  38. Zhang F., Sowers J. R., Ram J. L., Standley P. R., Peuler J. D. Effects of pioglitazone on calcium channels in vascular smooth muscle. Hypertension. 1994 Aug;24(2):170–175. doi: 10.1161/01.hyp.24.2.170. [DOI] [PubMed] [Google Scholar]
  39. Zhang H. Y., Reddy S. R., Kotchen T. A. Antihypertensive effect of pioglitazone is not invariably associated with increased insulin sensitivity. Hypertension. 1994 Jul;24(1):106–110. doi: 10.1161/01.hyp.24.1.106. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES