Skip to main content
Infectious Diseases in Obstetrics and Gynecology logoLink to Infectious Diseases in Obstetrics and Gynecology
. 2003;11(3):147–156. doi: 10.1080/10647440300025513

Inhibition of Vaginal Lactobacilli by a Bacteriocin-Like Inhibitor Produced by Enterococcus faecium 62-6: Potential Significance for Bacterial Vaginosis

Maureen C Kelly 1, Michael J Mequio 1, Vivien Pybus 1,
PMCID: PMC1852286  PMID: 15022875

Abstract

Objective: Bacterial vaginosis (BV) is characterized by a shift in vaginal tract ecology, which includes a decrease in the concentration and/or prevalence of facultative lactobacilli. Currently, mechanisms which could account for the disappearance of lactobacilli are not well understood. The objective of this study was to determine whether vaginal streptococci/enterococci can produce bacteriocin-like inhibitors antagonistic to vaginal lactobacilli.

Methods: Seventy strains of vaginal streptococci or enterococci were tested for antagonistic activities against vaginal lactobacilli using the deferred antagonism technique.

Results: One strain, Enterococcus faecium 62-6, which strongly inhibited growth of lactobacilli was selected for further characterization. The spectrum of inhibitory activity of strain 62-6 included Gram-positive organisms from the vaginal environment, although native lactobacilli from the same host were resistant to inhibitor action. Following growth inMRSbroth the strain 62-6 inhibitor was shown to be heat- (100℃, 30 minutes), cold- (4℃, less than 114 days) and pH- (4–7) stable. The sensitivity of inhibitor-containing supernatants to pepsin and α-chymotrypsin suggested an essential proteinaceous component. The inhibitor was sensitive to lipase but resistant to lysozyme. Dialysis of inhibitor-containing culture supernatants suggested a molecular mass greater than 12 000 Da. All physicochemical properties were consistent with its classification as a bacteriocin-like inhibitor. Kinetic assays demonstrated a sharp onset of inhibitor production coinciding with a concentration of 62-6 of 107 cfu/ml, suggesting that production may be regulated by quorum sensing.

Conclusions: These results may have clinical significance as a novel mechanism to account for the decline of vaginal Lactobacillus populations and contribute to both the establishment and recurrence of BV.

Full Text

The Full Text of this article is available as a PDF (472.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amsel R., Totten P. A., Spiegel C. A., Chen K. C., Eschenbach D., Holmes K. K. Nonspecific vaginitis. Diagnostic criteria and microbial and epidemiologic associations. Am J Med. 1983 Jan;74(1):14–22. doi: 10.1016/0002-9343(83)91112-9. [DOI] [PubMed] [Google Scholar]
  2. BROCK T. D., DAVIE J. M. PROBABLE IDENTITY OF A GROUP D HEMOLYSIN WITH A BACTERIOCINE. J Bacteriol. 1963 Oct;86:708–712. doi: 10.1128/jb.86.4.708-712.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chen K. C., Forsyth P. S., Buchanan T. M., Holmes K. K. Amine content of vaginal fluid from untreated and treated patients with nonspecific vaginitis. J Clin Invest. 1979 May;63(5):828–835. doi: 10.1172/JCI109382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cohen C. R., Duerr A., Pruithithada N., Rugpao S., Hillier S., Garcia P., Nelson K. Bacterial vaginosis and HIV seroprevalence among female commercial sex workers in Chiang Mai, Thailand. AIDS. 1995 Sep;9(9):1093–1097. doi: 10.1097/00002030-199509000-00017. [DOI] [PubMed] [Google Scholar]
  5. Eschenbach D. A. Bacterial vaginosis: emphasis on upper genital tract complications. Obstet Gynecol Clin North Am. 1989 Sep;16(3):593–610. [PubMed] [Google Scholar]
  6. Faro S. Bacterial vaginosis: the quest continues. Infect Dis Obstet Gynecol. 2000;8(2):75–75. doi: 10.1002/(SICI)1098-0997(2000)8:2<75::AID-IDOG1>3.0.CO;2-E. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hill G. B., Livengood C. H., 3rd Bacterial vaginosis-associated microflora and effects of topical intravaginal clindamycin. Am J Obstet Gynecol. 1994 Nov;171(5):1198–1204. doi: 10.1016/0002-9378(94)90132-5. [DOI] [PubMed] [Google Scholar]
  8. Hill G. B. The microbiology of bacterial vaginosis. Am J Obstet Gynecol. 1993 Aug;169(2 Pt 2):450–454. doi: 10.1016/0002-9378(93)90339-k. [DOI] [PubMed] [Google Scholar]
  9. Hillier S., Krohn M. A., Watts D. H., Wolner-Hanssen P., Eschenbach D. Microbiologic efficacy of intravaginal clindamycin cream for the treatment of bacterial vaginosis. Obstet Gynecol. 1990 Sep;76(3 Pt 1):407–413. [PubMed] [Google Scholar]
  10. Hynes W. L., Tagg J. R. Production of broad-spectrum bacteriocin-like activity by group A streptococci of particular M-types. Zentralbl Bakteriol Mikrobiol Hyg A. 1985 Apr;259(2):155–164. doi: 10.1016/s0176-6724(85)80046-8. [DOI] [PubMed] [Google Scholar]
  11. Jack R. W., Tagg J. R., Ray B. Bacteriocins of gram-positive bacteria. Microbiol Rev. 1995 Jun;59(2):171–200. doi: 10.1128/mr.59.2.171-200.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Klaenhammer T. R. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev. 1993 Sep;12(1-3):39–85. doi: 10.1111/j.1574-6976.1993.tb00012.x. [DOI] [PubMed] [Google Scholar]
  13. McLean N. W., McGroarty J. A. Growth inhibition of metronidazole-susceptible and metronidazole-resistant strains of Gardnerella vaginalis by Lactobacilli in vitro. Appl Environ Microbiol. 1996 Mar;62(3):1089–1092. doi: 10.1128/aem.62.3.1089-1092.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. POHUNEK M. Streptococci antagonizing the vaginal lactobacillus. J Hyg Epidemiol Microbiol Immunol. 1961;5:267–270. [PubMed] [Google Scholar]
  15. Pybus V., Onderdonk A. B. A commensal symbiosis between Prevotella bivia and Peptostreptococcus anaerobius involves amino acids: potential significance to the pathogenesis of bacterial vaginosis. FEMS Immunol Med Microbiol. 1998 Dec;22(4):317–327. doi: 10.1111/j.1574-695X.1998.tb01221.x. [DOI] [PubMed] [Google Scholar]
  16. Pybus V., Onderdonk A. B. Evidence for a commensal, symbiotic relationship between Gardnerella vaginalis and Prevotella bivia involving ammonia: potential significance for bacterial vaginosis. J Infect Dis. 1997 Feb;175(2):406–413. doi: 10.1093/infdis/175.2.406. [DOI] [PubMed] [Google Scholar]
  17. Pybus V., Onderdonk A. B. Microbial interactions in the vaginal ecosystem, with emphasis on the pathogenesis of bacterial vaginosis. Microbes Infect. 1999 Apr;1(4):285–292. doi: 10.1016/s1286-4579(99)80024-0. [DOI] [PubMed] [Google Scholar]
  18. Redondo-Lopez V., Cook R. L., Sobel J. D. Emerging role of lactobacilli in the control and maintenance of the vaginal bacterial microflora. Rev Infect Dis. 1990 Sep-Oct;12(5):856–872. doi: 10.1093/clinids/12.5.856. [DOI] [PubMed] [Google Scholar]
  19. Sewankambo N., Gray R. H., Wawer M. J., Paxton L., McNaim D., Wabwire-Mangen F., Serwadda D., Li C., Kiwanuka N., Hillier S. L. HIV-1 infection associated with abnormal vaginal flora morphology and bacterial vaginosis. Lancet. 1997 Aug 23;350(9077):546–550. doi: 10.1016/s0140-6736(97)01063-5. [DOI] [PubMed] [Google Scholar]
  20. Sobel J. D. Bacterial vaginosis--an ecologic mystery. Ann Intern Med. 1989 Oct 1;111(7):551–553. doi: 10.7326/0003-4819-111-7-551. [DOI] [PubMed] [Google Scholar]
  21. Sobel J. D., Schmitt C., Meriwether C. Long-term follow-up of patients with bacterial vaginosis treated with oral metronidazole and topical clindamycin. J Infect Dis. 1993 Mar;167(3):783–784. doi: 10.1093/infdis/167.3.783. [DOI] [PubMed] [Google Scholar]
  22. Spiegel C. A., Amsel R., Eschenbach D., Schoenknecht F., Holmes K. K. Anaerobic bacteria in nonspecific vaginitis. N Engl J Med. 1980 Sep 11;303(11):601–607. doi: 10.1056/NEJM198009113031102. [DOI] [PubMed] [Google Scholar]
  23. Sweet R. L. Role of bacterial vaginosis in pelvic inflammatory disease. Clin Infect Dis. 1995 Jun;20 (Suppl 2):S271–S275. doi: 10.1093/clinids/20.supplement_2.s271. [DOI] [PubMed] [Google Scholar]
  24. Tagg J. R., Bannister L. V. "Fingerprinting" beta-haemolytic streptococci by their production of and sensitivity to bacteriocine-like inhibitors. J Med Microbiol. 1979 Nov;12(4):397–411. doi: 10.1099/00222615-12-4-397. [DOI] [PubMed] [Google Scholar]
  25. Tagg J. R., Dajani A. S., Wannamaker L. W. Bacteriocins of gram-positive bacteria. Bacteriol Rev. 1976 Sep;40(3):722–756. doi: 10.1128/br.40.3.722-756.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tagg J. R. Production of bacteriocin-like inhibitors by group A streptococci of nephritogenic M types. J Clin Microbiol. 1984 Jun;19(6):884–887. doi: 10.1128/jcm.19.6.884-887.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Tagg J. R., Read R. S., McGiven A. R. Bacteriocin of a group A streptococcus: partial purification and properties. Antimicrob Agents Chemother. 1973 Sep;4(3):214–221. doi: 10.1128/aac.4.3.214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Tao L., Pavlova S. I. Images in Infectious Diseases in Obstetrics and Gynecology. Vaginal Lactobacillus phage plaques and electron micrograph. Infect Dis Obstet Gynecol. 1998;6(6):236–236. doi: 10.1002/(SICI)1098-0997(1998)6:6<236::AID-IDOG2>3.0.CO;2-I. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Warren D., Klein R. S., Sobel J., Kieke B., Jr, Brown W., Schuman P., Anderson J., Cu-Uvin S., Mayer K., Jamieson D. J. A multicenter study of bacterial vaginosis in women with or at risk for human immunodeficiency virus infection. Infect Dis Obstet Gynecol. 2001;9(3):133–141. doi: 10.1155/S1064744901000242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Winans Stephen C., Bassler Bonnie L. Mob psychology. J Bacteriol. 2002 Feb;184(4):873–883. doi: 10.1128/jb.184.4.873-883.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infectious Diseases in Obstetrics and Gynecology are provided here courtesy of Wiley

RESOURCES