Abstract
Chromogranin A, a soluble acidic protein, is a ubiquitous component of secretory vesicles throughout the neuroendocrine system. We reported previously the cloning and initial characterization of the mouse chromogranin A gene promoter, which showed that the promoter contains both positive and negative domains and that a proximal promoter spanning nucleotides -147 to +42 bp relative to the transcriptional start site is sufficient for neuroendocrine cell type-specific expression. The current study was undertaken to identify the particular elements within this proximal promoter that control tissue-specific expression. We found that deletion or point mutations in the potential cAMP response element (CRE) site at -68 bp virtually abolished promoter activity specifically in neuroendocrine (PC12 chromaffin or AtT20 corticotrope) cells, with little effect on activity in control (NIH3T3 fibroblast) cells; thus, the CRE box is necessary for neuroendocrine cell type-specific activity of the chromogranin A promoter. Furthermore, the effect of the CRE site is enhanced in the context of intact (wild-type) promoter sequences between -147 and -100 bp. DNase I footprint analysis showed that these regions (including the CRE box) bind nuclear proteins present in both neuroendocrine (AtT20) and control (NIH3T3) cells. In AtT20 cells, electrophoretic mobility shift assays and factor-specific antibody supershifts showed that an oligonucleotide containing the chromogranin A CRE site formed a single, homogeneous protein-DNA complex containing the CRE-binding protein CREB. However, in control NIH3T3 cells we found evidence for an additional immunologically unrelated protein in this complex. A single copy of this oligonucleotide was able to confer neuroendocrine-specific expression to a heterologous (thymidine kinase) promoter, albeit with less fold selectivity than the full proximal chromogranin A promoter. Hence, the CRE site was partially sufficient to explain the neuroendocrine cell type specificity of the promoter. The functional activity of the CRE site was confirmed through studies of the endogenous chromogranin A gene. Northern mRNA analysis showed that expression of the endogenous chromogranin A gene was stimulated seven- to eightfold by cAMP in PC12 cells, whereas no induction occurred in the NIH3T3 cells. Similar cAMP induction was obtained with the transfected chromogranin A promoter in PC12 cells, and abolition of the CRE site (by deletion or point mutation) eliminated the induction. Thus, the CRE site in the chromogranin A proximal promoter is functional and plays a crucial, indeed indispensable, role in neuroendocrine-specific expression of the gene. These results also provide insight into transcriptional mechanisms governing acquisition of the neuroendocrine secretory phenotype.
Full text
PDF










Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alberts A. S., Arias J., Hagiwara M., Montminy M. R., Feramisco J. R. Recombinant cyclic AMP response element binding protein (CREB) phosphorylated on Ser-133 is transcriptionally active upon its introduction into fibroblast nuclei. J Biol Chem. 1994 Mar 11;269(10):7623–7630. [PubMed] [Google Scholar]
- Alberts A. S., Montminy M., Shenolikar S., Feramisco J. R. Expression of a peptide inhibitor of protein phosphatase 1 increases phosphorylation and activity of CREB in NIH 3T3 fibroblasts. Mol Cell Biol. 1994 Jul;14(7):4398–4407. doi: 10.1128/mcb.14.7.4398. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bowlus C. L., McQuillan J. J., Dean D. C. Characterization of three different elements in the 5'-flanking region of the fibronectin gene which mediate a transcriptional response to cAMP. J Biol Chem. 1991 Jan 15;266(2):1122–1127. [PubMed] [Google Scholar]
- Brindle P. K., Montminy M. R. The CREB family of transcription activators. Curr Opin Genet Dev. 1992 Apr;2(2):199–204. doi: 10.1016/s0959-437x(05)80274-6. [DOI] [PubMed] [Google Scholar]
- Brindle P., Linke S., Montminy M. Protein-kinase-A-dependent activator in transcription factor CREB reveals new role for CREM repressors. Nature. 1993 Aug 26;364(6440):821–824. doi: 10.1038/364821a0. [DOI] [PubMed] [Google Scholar]
- Chen M., Schnermann J., Smart A. M., Brosius F. C., Killen P. D., Briggs J. P. Cyclic AMP selectively increases renin mRNA stability in cultured juxtaglomerular granular cells. J Biol Chem. 1993 Nov 15;268(32):24138–24144. [PubMed] [Google Scholar]
- Chrivia J. C., Kwok R. P., Lamb N., Hagiwara M., Montminy M. R., Goodman R. H. Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature. 1993 Oct 28;365(6449):855–859. doi: 10.1038/365855a0. [DOI] [PubMed] [Google Scholar]
- Dean D. C., McQuillan J. J., Weintraub S. Serum stimulation of fibronectin gene expression appears to result from rapid serum-induced binding of nuclear proteins to a cAMP response element. J Biol Chem. 1990 Feb 25;265(6):3522–3527. [PubMed] [Google Scholar]
- Dickerson I. M., Mains R. E. Cell-type specific posttranslational processing of peptides by different pituitary cell lines. Endocrinology. 1990 Jul;127(1):133–140. doi: 10.1210/endo-127-1-133. [DOI] [PubMed] [Google Scholar]
- Fischer-Colbrie R., Gutierrez J., Hsu C. M., Iacangelo A., Eiden L. E. Sequence analysis, tissue distribution and regulation by cell depolarization, and second messengers of bovine secretogranin II (chromogranin C) mRNA. J Biol Chem. 1990 Jun 5;265(16):9208–9213. [PubMed] [Google Scholar]
- Greene L. A., Tischler A. S. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2424–2428. doi: 10.1073/pnas.73.7.2424. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haisenleder D. J., Yasin M., Marshall J. C. Enhanced effectiveness of pulsatile 3',5'-cyclic adenosine monophosphate in stimulating prolactin and alpha-subunit gene expression. Endocrinology. 1992 Dec;131(6):3027–3033. doi: 10.1210/endo.131.6.1280210. [DOI] [PubMed] [Google Scholar]
- Hasel K. W., Sutcliffe J. G. Nucleotide sequence of a cDNA coding for mouse cyclophilin. Nucleic Acids Res. 1990 Jul 11;18(13):4019–4019. doi: 10.1093/nar/18.13.4019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Horiuchi M., Nakamura N., Tang S. S., Barrett G., Dzau V. J. Molecular mechanism of tissue-specific regulation of mouse renin gene expression by cAMP. Identification of an inhibitory protein that binds nuclear transcriptional factor. J Biol Chem. 1991 Aug 25;266(24):16247–16254. [PubMed] [Google Scholar]
- Hurst H. C. Transcription factors. 1: bZIP proteins. Protein Profile. 1994;1(2):123–168. [PubMed] [Google Scholar]
- Iacangelo A. L., Grimes M., Eiden L. E. The bovine chromogranin A gene: structural basis for hormone regulation and generation of biologically active peptides. Mol Endocrinol. 1991 Nov;5(11):1651–1660. doi: 10.1210/mend-5-11-1651. [DOI] [PubMed] [Google Scholar]
- Ishiguro H., Kim K. T., Joh T. H., Kim K. S. Neuron-specific expression of the human dopamine beta-hydroxylase gene requires both the cAMP-response element and a silencer region. J Biol Chem. 1993 Aug 25;268(24):17987–17994. [PubMed] [Google Scholar]
- Kase H., Iwahashi K., Nakanishi S., Matsuda Y., Yamada K., Takahashi M., Murakata C., Sato A., Kaneko M. K-252 compounds, novel and potent inhibitors of protein kinase C and cyclic nucleotide-dependent protein kinases. Biochem Biophys Res Commun. 1987 Jan 30;142(2):436–440. doi: 10.1016/0006-291x(87)90293-2. [DOI] [PubMed] [Google Scholar]
- Kim K. S., Tinti C., Song B., Cubells J. F., Joh T. H. Cyclic AMP-dependent protein kinase regulates basal and cyclic AMP-stimulated but not phorbol ester-stimulated transcription of the tyrosine hydroxylase gene. J Neurochem. 1994 Sep;63(3):834–842. doi: 10.1046/j.1471-4159.1994.63030834.x. [DOI] [PubMed] [Google Scholar]
- Laslop A., Tschernitz C., Eiter C. Biosynthesis of proteins of large dense-core vesicles in rat PC12 cells: regulation by forskolin and phorbol ester. Neuroscience. 1994 Mar;59(2):477–485. doi: 10.1016/0306-4522(94)90611-4. [DOI] [PubMed] [Google Scholar]
- Laybourn P. J., Kadonaga J. T. Role of nucleosomal cores and histone H1 in regulation of transcription by RNA polymerase II. Science. 1991 Oct 11;254(5029):238–245. doi: 10.1126/science.254.5029.238. [DOI] [PubMed] [Google Scholar]
- Lee W., Mitchell P., Tjian R. Purified transcription factor AP-1 interacts with TPA-inducible enhancer elements. Cell. 1987 Jun 19;49(6):741–752. doi: 10.1016/0092-8674(87)90612-x. [DOI] [PubMed] [Google Scholar]
- McMahon A., Sabban E. L. Regulation of expression of dopamine beta-hydroxylase in PC12 cells by glucocorticoids and cyclic AMP analogues. J Neurochem. 1992 Dec;59(6):2040–2047. doi: 10.1111/j.1471-4159.1992.tb10092.x. [DOI] [PubMed] [Google Scholar]
- Molina C. A., Foulkes N. S., Lalli E., Sassone-Corsi P. Inducibility and negative autoregulation of CREM: an alternative promoter directs the expression of ICER, an early response repressor. Cell. 1993 Dec 3;75(5):875–886. doi: 10.1016/0092-8674(93)90532-u. [DOI] [PubMed] [Google Scholar]
- Montminy M. R., Sevarino K. A., Wagner J. A., Mandel G., Goodman R. H. Identification of a cyclic-AMP-responsive element within the rat somatostatin gene. Proc Natl Acad Sci U S A. 1986 Sep;83(18):6682–6686. doi: 10.1073/pnas.83.18.6682. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mouland A. J., Bevan S., White J. H., Hendy G. N. Human chromogranin A gene. Molecular cloning, structural analysis, and neuroendocrine cell-specific expression. J Biol Chem. 1994 Mar 4;269(9):6918–6926. [PubMed] [Google Scholar]
- Muro A. F., Bernath V. A., Kornblihtt A. R. Interaction of the -170 cyclic AMP response element with the adjacent CCAAT box in the human fibronectin gene promoter. J Biol Chem. 1992 Jun 25;267(18):12767–12774. [PubMed] [Google Scholar]
- Nordeen S. K. Luciferase reporter gene vectors for analysis of promoters and enhancers. Biotechniques. 1988 May;6(5):454–458. [PubMed] [Google Scholar]
- Nordheim A. Transcription factors. CREB takes CBP to tango. Nature. 1994 Jul 21;370(6486):177–178. doi: 10.1038/370177a0. [DOI] [PubMed] [Google Scholar]
- O'Connor D. T., Burton D., Deftos L. J. Chromogranin A: immunohistology reveals its universal occurrence in normal polypeptide hormone producing endocrine glands. Life Sci. 1983 Oct 24;33(17):1657–1663. doi: 10.1016/0024-3205(83)90721-x. [DOI] [PubMed] [Google Scholar]
- O'Connor D. T. Chromogranin: widespread immunoreactivity in polypeptide hormone producing tissues and in serum. Regul Pept. 1983 Jul;6(3):263–280. doi: 10.1016/0167-0115(83)90145-3. [DOI] [PubMed] [Google Scholar]
- Pohl T. M., Phillips E., Song K. Y., Gerdes H. H., Huttner W. B., Rüther U. The organisation of the mouse chromogranin B (secretogranin I) gene. FEBS Lett. 1990 Mar 26;262(2):219–224. doi: 10.1016/0014-5793(90)80194-n. [DOI] [PubMed] [Google Scholar]
- Rozansky D. J., Wu H., Tang K., Parmer R. J., O'Connor D. T. Glucocorticoid activation of chromogranin A gene expression. Identification and characterization of a novel glucocorticoid response element. J Clin Invest. 1994 Dec;94(6):2357–2368. doi: 10.1172/JCI117601. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schimmel A., Bräunling O., Rüther U., Huttner W. B., Gerdes H. H. The organisation of the mouse secretogranin II gene. FEBS Lett. 1992 Dec 21;314(3):375–380. doi: 10.1016/0014-5793(92)81509-k. [DOI] [PubMed] [Google Scholar]
- Smith C. L., Archer T. K., Hamlin-Green G., Hager G. L. Newly expressed progesterone receptor cannot activate stable, replicated mouse mammary tumor virus templates but acquires transactivation potential upon continuous expression. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11202–11206. doi: 10.1073/pnas.90.23.11202. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steger D. J., Hecht J. H., Mellon P. L. GATA-binding proteins regulate the human gonadotropin alpha-subunit gene in the placenta and pituitary gland. Mol Cell Biol. 1994 Aug;14(8):5592–5602. doi: 10.1128/mcb.14.8.5592. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Theill L. E., Karin M. Transcriptional control of GH expression and anterior pituitary development. Endocr Rev. 1993 Dec;14(6):670–689. doi: 10.1210/edrv-14-6-670. [DOI] [PubMed] [Google Scholar]
- Thompson M. E., Valentine D. L., Strada S. J., Wagner J. A., Scammell J. G. Transcriptional regulation of secretogranin II and chromogranin B by cyclic AMP in a rat pheochromocytoma cell line. Mol Pharmacol. 1994 Nov;46(5):880–889. [PubMed] [Google Scholar]
- Thompson M. E., Zimmer W. E., Wear L. B., MacMillan L. A., Thompson W. J., Huttner W. B., Hidaka H., Scammell J. G. Differential regulation of chromogranin B/secretogranin I and secretogranin II by forskolin in PC12 cells. Brain Res Mol Brain Res. 1992 Jan;12(1-3):195–202. doi: 10.1016/0169-328x(92)90084-o. [DOI] [PubMed] [Google Scholar]
- Wan D. C., Marley P. D., Livett B. G. Coordinate and differential regulation of proenkephalin A and PNMT mRNA expression in cultured bovine adrenal chromaffin cells: responses to cAMP elevation and phorbol esters. Brain Res Mol Brain Res. 1991 Jan;9(1-2):135–142. doi: 10.1016/0169-328x(91)90138-n. [DOI] [PubMed] [Google Scholar]
- Weiler R., Fischer-Colbrie R., Schmid K. W., Feichtinger H., Bussolati G., Grimelius L., Krisch K., Kerl H., O'Connor D., Winkler H. Immunological studies on the occurrence and properties of chromogranin A and B and secretogranin II in endocrine tumors. Am J Surg Pathol. 1988 Nov;12(11):877–884. doi: 10.1097/00000478-198811000-00008. [DOI] [PubMed] [Google Scholar]
- Wu H. J., Rozansky D. J., Parmer R. J., Gill B. M., O'Connor D. T. Structure and function of the chromogranin A gene. Clues to evolution and tissue-specific expression. J Biol Chem. 1991 Jul 15;266(20):13130–13134. [PubMed] [Google Scholar]
- Wu H., Rozansky D. J., Webster N. J., O'Connor D. T. Cell type-specific gene expression in the neuroendocrine system. A neuroendocrine-specific regulatory element in the promoter of chromogranin A, a ubiquitous secretory granule core protein. J Clin Invest. 1994 Jul;94(1):118–129. doi: 10.1172/JCI117297. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamamoto K. K., Gonzalez G. A., Menzel P., Rivier J., Montminy M. R. Characterization of a bipartite activator domain in transcription factor CREB. Cell. 1990 Feb 23;60(4):611–617. doi: 10.1016/0092-8674(90)90664-z. [DOI] [PubMed] [Google Scholar]
- de Groot R. P., Ballou L. M., Sassone-Corsi P. Positive regulation of the cAMP-responsive activator CREM by the p70 S6 kinase: an alternative route to mitogen-induced gene expression. Cell. 1994 Oct 7;79(1):81–91. doi: 10.1016/0092-8674(94)90402-2. [DOI] [PubMed] [Google Scholar]
- de Wet J. R., Wood K. V., DeLuca M., Helinski D. R., Subramani S. Firefly luciferase gene: structure and expression in mammalian cells. Mol Cell Biol. 1987 Feb;7(2):725–737. doi: 10.1128/mcb.7.2.725. [DOI] [PMC free article] [PubMed] [Google Scholar]




