Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1995 Jul;96(1):631–638. doi: 10.1172/JCI118078

Increased nitric oxide synthase activity despite lack of response to endothelium-dependent vasodilators in postischemic acute renal failure in rats.

J Conger 1, J Robinette 1, A Villar 1, L Raij 1, P Shultz 1
PMCID: PMC185238  PMID: 7542287

Abstract

Lack of response to endothelium-dependent vasodilators generally has been considered to be evidence for decreased nitric oxide synthase (NOS) activity and NO generation after ischemic or hypoxic injury to vital organs including the kidney. In this study, renal blood flow (RBF) responses to endothelium-dependent vasodilators acetylcholine and bradykinin and the endothelium-independent vasodilator prostacyclin, the nonselective NOS inhibitor L-NAME (without and with L-arginine), the inducible NOS inhibitor aminoguanidine, and the NO-donor sodium nitroprusside were examined in 1-wk norepinephrine-induced (NE) and sham-induced acute renal failure (ARF) rats. Compared with sham-ARF, there was no increase in RBF to intrarenal acetylcholine and bradykinin, but a comparable RBF increase to prostacyclin in NE-ARF kidneys. However, there was a significantly greater decline in RBF to intravenous L-NAME in NE- than sham-ARF rats (-65 +/- 8 vs. -37 +/- 5%, P < 0.001) which was completely blocked by prior L-arginine infusion. There was no change in RBF to the inducible NOS specific inhibitor aminoguanidine. Unlike sham-ARF, there was no increase in RBF to intrarenal sodium nitroprusside in NE-ARF. Immunohistochemistry and immunofluorescence detection of constitutive (c) NOS using mouse monoclonal antibody were carried out to positively determine the presence of cNOS in NE-ARF. 90% of renal resistance vessels showed evidence of endothelial cNOS in both sham- and NE-ARF. Taken together, results of these experiments are consistent with the conclusion that NOS/NO activity is, in fact, maximal at baseline in 1-wk NE-ARF and cannot be increased further by exogenous stimuli of NOS activity. The increased NOS is likely of the constitutive form and of endothelial origin. It is suggested that the increased NOS activity is in response to ischemia-induced renal vasoconstrictor activity. Attenuated response to endothelium-dependent vasodilators cannot be interpreted only as evidence for decreased NOS activity.

Full text

PDF
631

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adnot S., Raffestin B., Eddahibi S., Braquet P., Chabrier P. E. Loss of endothelium-dependent relaxant activity in the pulmonary circulation of rats exposed to chronic hypoxia. J Clin Invest. 1991 Jan;87(1):155–162. doi: 10.1172/JCI114965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arendshorst W. J. Autoregulation of renal blood flow in spontaneously hypertensive rats. Circ Res. 1979 Mar;44(3):344–349. doi: 10.1161/01.res.44.3.344. [DOI] [PubMed] [Google Scholar]
  3. Baylis C., Engels K., Samsell L., Harton P. Renal effects of acute endothelial-derived relaxing factor blockade are not mediated by angiotensin II. Am J Physiol. 1993 Jan;264(1 Pt 2):F74–F78. doi: 10.1152/ajprenal.1993.264.1.F74. [DOI] [PubMed] [Google Scholar]
  4. Conger J. D., Falk S. A., Hammond W. S. Atrial natriuretic peptide and dopamine in established acute renal failure in the rat. Kidney Int. 1991 Jul;40(1):21–28. doi: 10.1038/ki.1991.174. [DOI] [PubMed] [Google Scholar]
  5. Conger J. D., Robinette J. B., Hammond W. S. Differences in vascular reactivity in models of ischemic acute renal failure. Kidney Int. 1991 Jun;39(6):1087–1097. doi: 10.1038/ki.1991.138. [DOI] [PubMed] [Google Scholar]
  6. Conger J. D., Robinette J. B., Schrier R. W. Smooth muscle calcium and endothelium-derived relaxing factor in the abnormal vascular responses of acute renal failure. J Clin Invest. 1988 Aug;82(2):532–537. doi: 10.1172/JCI113628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Conger J. D., Schultz M. F., Miller F., Robinette J. B. Responses to hemorrhagic arterial pressure reduction in different ischemic renal failure models. Kidney Int. 1994 Aug;46(2):318–323. doi: 10.1038/ki.1994.277. [DOI] [PubMed] [Google Scholar]
  8. DiBona G. F., Sawin L. L. The renin-angiotensin system in acute renal failure in the rat. Lab Invest. 1971 Dec;25(6):528–532. [PubMed] [Google Scholar]
  9. Edwards R. M., Pullen M., Nambi P. Activation of endothelin ETB receptors increases glomerular cGMP via an L-arginine-dependent pathway. Am J Physiol. 1992 Dec;263(6 Pt 2):F1020–F1025. doi: 10.1152/ajprenal.1992.263.6.F1020. [DOI] [PubMed] [Google Scholar]
  10. Furchgott R. F., Zawadzki J. V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980 Nov 27;288(5789):373–376. doi: 10.1038/288373a0. [DOI] [PubMed] [Google Scholar]
  11. Griffiths M. J., Messent M., MacAllister R. J., Evans T. W. Aminoguanidine selectively inhibits inducible nitric oxide synthase. Br J Pharmacol. 1993 Nov;110(3):963–968. doi: 10.1111/j.1476-5381.1993.tb13907.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gross S. S., Jaffe E. A., Levi R., Kilbourn R. G. Cytokine-activated endothelial cells express an isotype of nitric oxide synthase which is tetrahydrobiopterin-dependent, calmodulin-independent and inhibited by arginine analogs with a rank-order of potency characteristic of activated macrophages. Biochem Biophys Res Commun. 1991 Aug 15;178(3):823–829. doi: 10.1016/0006-291x(91)90965-a. [DOI] [PubMed] [Google Scholar]
  13. Hasan K., Heesen B. J., Corbett J. A., McDaniel M. L., Chang K., Allison W., Wolffenbuttel B. H., Williamson J. R., Tilton R. G. Inhibition of nitric oxide formation by guanidines. Eur J Pharmacol. 1993 Nov 2;249(1):101–106. doi: 10.1016/0014-2999(93)90667-7. [DOI] [PubMed] [Google Scholar]
  14. Henrich W. L. The endothelium--a key regulator of vascular tone. Am J Med Sci. 1991 Nov;302(5):319–328. doi: 10.1097/00000441-199111000-00011. [DOI] [PubMed] [Google Scholar]
  15. Ignarro L. J. Biological actions and properties of endothelium-derived nitric oxide formed and released from artery and vein. Circ Res. 1989 Jul;65(1):1–21. doi: 10.1161/01.res.65.1.1. [DOI] [PubMed] [Google Scholar]
  16. Mayhan W. G., Amundsen S. M., Faraci F. M., Heistad D. D. Responses of cerebral arteries after ischemia and reperfusion in cats. Am J Physiol. 1988 Oct;255(4 Pt 2):H879–H884. doi: 10.1152/ajpheart.1988.255.4.H879. [DOI] [PubMed] [Google Scholar]
  17. Palmer R. M., Ferrige A. G., Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987 Jun 11;327(6122):524–526. doi: 10.1038/327524a0. [DOI] [PubMed] [Google Scholar]
  18. Palmer R. M., Moncada S. A novel citrulline-forming enzyme implicated in the formation of nitric oxide by vascular endothelial cells. Biochem Biophys Res Commun. 1989 Jan 16;158(1):348–352. doi: 10.1016/s0006-291x(89)80219-0. [DOI] [PubMed] [Google Scholar]
  19. Panza J. A., Quyyumi A. A., Brush J. E., Jr, Epstein S. E. Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension. N Engl J Med. 1990 Jul 5;323(1):22–27. doi: 10.1056/NEJM199007053230105. [DOI] [PubMed] [Google Scholar]
  20. Perrella M. A., Edell E. S., Krowka M. J., Cortese D. A., Burnett J. C., Jr Endothelium-derived relaxing factor in pulmonary and renal circulations during hypoxia. Am J Physiol. 1992 Jul;263(1 Pt 2):R45–R50. doi: 10.1152/ajpregu.1992.263.1.R45. [DOI] [PubMed] [Google Scholar]
  21. Pollock J. S., Nakane M., Buttery L. D., Martinez A., Springall D., Polak J. M., Förstermann U., Murad F. Characterization and localization of endothelial nitric oxide synthase using specific monoclonal antibodies. Am J Physiol. 1993 Nov;265(5 Pt 1):C1379–C1387. doi: 10.1152/ajpcell.1993.265.5.C1379. [DOI] [PubMed] [Google Scholar]
  22. Quillen J. E., Sellke F. W., Brooks L. A., Harrison D. G. Ischemia-reperfusion impairs endothelium-dependent relaxation of coronary microvessels but does not affect large arteries. Circulation. 1990 Aug;82(2):586–594. doi: 10.1161/01.cir.82.2.586. [DOI] [PubMed] [Google Scholar]
  23. Shibouta Y., Suzuki N., Shino A., Matsumoto H., Terashita Z., Kondo K., Nishikawa K. Pathophysiological role of endothelin in acute renal failure. Life Sci. 1990;46(22):1611–1618. doi: 10.1016/0024-3205(90)90392-5. [DOI] [PubMed] [Google Scholar]
  24. Shultz P. J., Raij L. Endogenously synthesized nitric oxide prevents endotoxin-induced glomerular thrombosis. J Clin Invest. 1992 Nov;90(5):1718–1725. doi: 10.1172/JCI116045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sigmon D. H., Carretero O. A., Beierwaltes W. H. Angiotensin dependence of endothelium-mediated renal hemodynamics. Hypertension. 1992 Nov;20(5):643–650. doi: 10.1161/01.hyp.20.5.643. [DOI] [PubMed] [Google Scholar]
  26. Simon B. C., Cunningham L. D., Cohen R. A. Oxidized low density lipoproteins cause contraction and inhibit endothelium-dependent relaxation in the pig coronary artery. J Clin Invest. 1990 Jul;86(1):75–79. doi: 10.1172/JCI114718. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sternbergh W. C., Makhoul R. G., Adelman B. Nitric oxide-mediated, endothelium-dependent vasodilation is selectively attenuated in the postischemic extremity. Surgery. 1993 Nov;114(5):960–967. [PubMed] [Google Scholar]
  28. Tilton R. G., Chang K., Hasan K. S., Smith S. R., Petrash J. M., Misko T. P., Moore W. M., Currie M. G., Corbett J. A., McDaniel M. L. Prevention of diabetic vascular dysfunction by guanidines. Inhibition of nitric oxide synthase versus advanced glycation end-product formation. Diabetes. 1993 Feb;42(2):221–232. doi: 10.2337/diab.42.2.221. [DOI] [PubMed] [Google Scholar]
  29. VanBenthuysen K. M., McMurtry I. F., Horwitz L. D. Reperfusion after acute coronary occlusion in dogs impairs endothelium-dependent relaxation to acetylcholine and augments contractile reactivity in vitro. J Clin Invest. 1987 Jan;79(1):265–274. doi: 10.1172/JCI112793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wallenstein S., Zucker C. L., Fleiss J. L. Some statistical methods useful in circulation research. Circ Res. 1980 Jul;47(1):1–9. doi: 10.1161/01.res.47.1.1. [DOI] [PubMed] [Google Scholar]
  31. Warner T. D., Schmidt H. H., Murad F. Interactions of endothelins and EDRF in bovine native endothelial cells: selective effects of endothelin-3. Am J Physiol. 1992 May;262(5 Pt 2):H1600–H1605. doi: 10.1152/ajpheart.1992.262.5.H1600. [DOI] [PubMed] [Google Scholar]
  32. Wolvekamp M. C., de Bruin R. W. Diamine oxidase: an overview of historical, biochemical and functional aspects. Dig Dis. 1994 Jan-Feb;12(1):2–14. doi: 10.1159/000171432. [DOI] [PubMed] [Google Scholar]
  33. Zhang Z. G., Chopp M., Zaloga C., Pollock J. S., Förstermann U. Cerebral endothelial nitric oxide synthase expression after focal cerebral ischemia in rats. Stroke. 1993 Dec;24(12):2016–2022. doi: 10.1161/01.str.24.12.2016. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES