Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1995 Aug;96(2):657–664. doi: 10.1172/JCI118108

Rat kidney thromboxane receptor: molecular cloning, signal transduction, and intrarenal expression localization.

T Abe 1, K Takeuchi 1, N Takahashi 1, E Tsutsumi 1, Y Taniyama 1, K Abe 1
PMCID: PMC185246  PMID: 7635958

Abstract

Thromboxane (TX) plays important roles in control of renal hemodynamics and water and electrolyte metabolism, and is involved in the pathophysiology of many renal diseases. The aim of the present study is to isolate a rat kidney cDNA encoding functional TX receptor, and to reveal its intrarenal expression localization. A clone (rTXR2) was isolated from a rat kidney cDNA library by a homology screening approach. rTXR2 was shown to encode the amino acid sequence containing seven transmembrane spanning domains representing rat (r) TX receptor. The membrane from COS-7 cells transiently transfected with rTXR2 cDNA was shown to be specifically bound by a thromboxane receptor antagonist, SQ29548. Either in Xenopus oocyte expression or in transfected COS-7 cells, rTX receptor was shown to be linked with Ca2+ messenger system. TX receptor-mediated increase in cytosolic Ca2+ was also observed in cultured glomerular mesangial cells. In situ hybridization showed that rTX receptor mRNA was detected in renal glomeruli, smooth muscle cells in renal arterioles, and transitional cell epithelium of renal pelvis. Reverse transcription linked to PCR applied to microdissected nephron segments indicated the presence of rTX receptor mRNA exclusively in the glomerulus. In conclusion, we have cloned a functional rat kidney TX receptor, which is expressed specifically in renal glomerulus, arterial smooth muscle cells, and transitional cell epithelium of renal pelvis. The present study will provide important insights into the etiology and pathophysiology of renal diseases with relation to TX metabolism.

Full text

PDF
657

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe T., Sugihara H., Nawa H., Shigemoto R., Mizuno N., Nakanishi S. Molecular characterization of a novel metabotropic glutamate receptor mGluR5 coupled to inositol phosphate/Ca2+ signal transduction. J Biol Chem. 1992 Jul 5;267(19):13361–13368. [PubMed] [Google Scholar]
  2. Burch R. M., Knapp D. R., Halushka P. V. Vasopressin-stimulated water flow is decreased by thromboxane synthesis inhibition or antagonism. Am J Physiol. 1980 Aug;239(2):F160–F166. doi: 10.1152/ajprenal.1980.239.2.F160. [DOI] [PubMed] [Google Scholar]
  3. Cirino M., Morton H., MacDonald C., Hadden J., Ford-Hutchinson A. W. Thromboxane A2 and prostaglandin endoperoxide analogue effects on porcine renal blood flow. Am J Physiol. 1990 Jan;258(1 Pt 2):F109–F114. doi: 10.1152/ajprenal.1990.258.1.F109. [DOI] [PubMed] [Google Scholar]
  4. Coffman T. M., Yarger W. E., Klotman P. E. Functional role of thromboxane production by acutely rejecting renal allografts in rats. J Clin Invest. 1985 Apr;75(4):1242–1248. doi: 10.1172/JCI111822. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Coppola S., Frömter E. An electrophysiological study of angiotensin II regulation of Na-HCO3 cotransport and K conductance in renal proximal tubules. I. Effect of picomolar concentrations. Pflugers Arch. 1994 May;427(1-2):143–150. doi: 10.1007/BF00585953. [DOI] [PubMed] [Google Scholar]
  6. Dascal N. The use of Xenopus oocytes for the study of ion channels. CRC Crit Rev Biochem. 1987;22(4):317–387. doi: 10.3109/10409238709086960. [DOI] [PubMed] [Google Scholar]
  7. Folger W. H., Halushka P. V., Wilcox C. S., Guzman N. J. Characterization of rat glomerular thromboxane A2 receptors: comparison to rat platelets. Eur J Pharmacol. 1992 Sep 1;227(1):71–78. doi: 10.1016/0922-4106(92)90144-k. [DOI] [PubMed] [Google Scholar]
  8. Funk C. D., Furci L., Moran N., Fitzgerald G. A. Point mutation in the seventh hydrophobic domain of the human thromboxane A2 receptor allows discrimination between agonist and antagonist binding sites. Mol Pharmacol. 1993 Nov;44(5):934–939. [PubMed] [Google Scholar]
  9. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  10. Hirata M., Hayashi Y., Ushikubi F., Yokota Y., Kageyama R., Nakanishi S., Narumiya S. Cloning and expression of cDNA for a human thromboxane A2 receptor. Nature. 1991 Feb 14;349(6310):617–620. doi: 10.1038/349617a0. [DOI] [PubMed] [Google Scholar]
  11. Hubbard S. C., Ivatt R. J. Synthesis and processing of asparagine-linked oligosaccharides. Annu Rev Biochem. 1981;50:555–583. doi: 10.1146/annurev.bi.50.070181.003011. [DOI] [PubMed] [Google Scholar]
  12. Kelley V. E., Sneve S., Musinski S. Increased renal thromboxane production in murine lupus nephritis. J Clin Invest. 1986 Jan;77(1):252–259. doi: 10.1172/JCI112284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kemp B. E., Pearson R. B. Protein kinase recognition sequence motifs. Trends Biochem Sci. 1990 Sep;15(9):342–346. doi: 10.1016/0968-0004(90)90073-k. [DOI] [PubMed] [Google Scholar]
  14. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  15. Mene' P., Simonson M. S., Dunn M. J. Eicosanoids, mesangial contraction, and intracellular signal transduction. Tohoku J Exp Med. 1992 Jan;166(1):57–73. doi: 10.1620/tjem.166.57. [DOI] [PubMed] [Google Scholar]
  16. Miki I., Kase H., Ishii A. Differences in activities of thromboxane A2 receptor antagonists in smooth muscle cells. Eur J Pharmacol. 1992 Oct 1;227(2):199–204. doi: 10.1016/0922-4106(92)90128-i. [DOI] [PubMed] [Google Scholar]
  17. Miki I., Kishibayashi N., Nonaka H., Ohshima E., Takami H., Obase H., Ishii A. Effects of KW-3635, a novel dibenzoxepin derivative of a selective thromboxane A2 antagonist, on human, guinea pig and rat platelets. Jpn J Pharmacol. 1992 Jul;59(3):357–364. doi: 10.1254/jjp.59.357. [DOI] [PubMed] [Google Scholar]
  18. Murphy T. J., Alexander R. W., Griendling K. K., Runge M. S., Bernstein K. E. Isolation of a cDNA encoding the vascular type-1 angiotensin II receptor. Nature. 1991 May 16;351(6323):233–236. doi: 10.1038/351233a0. [DOI] [PubMed] [Google Scholar]
  19. Namba T., Sugimoto Y., Hirata M., Hayashi Y., Honda A., Watabe A., Negishi M., Ichikawa A., Narumiya S. Mouse thromboxane A2 receptor: cDNA cloning, expression and northern blot analysis. Biochem Biophys Res Commun. 1992 May 15;184(3):1197–1203. doi: 10.1016/s0006-291x(05)80009-9. [DOI] [PubMed] [Google Scholar]
  20. Patrono C., Ciabattoni G., Remuzzi G., Gotti E., Bombardieri S., Di Munno O., Tartarelli G., Cinotti G. A., Simonetti B. M., Pierucci A. Functional significance of renal prostacyclin and thromboxane A2 production in patients with systemic lupus erythematosus. J Clin Invest. 1985 Sep;76(3):1011–1018. doi: 10.1172/JCI112053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Paxton W. G., Runge M., Horaist C., Cohen C., Alexander R. W., Bernstein K. E. Immunohistochemical localization of rat angiotensin II AT1 receptor. Am J Physiol. 1993 Jun;264(6 Pt 2):F989–F995. doi: 10.1152/ajprenal.1993.264.6.F989. [DOI] [PubMed] [Google Scholar]
  22. Perico N., Rossini M., Imberti O., Malanchini B., Cornejo R. P., Gaspari F., Bertani T., Remuzzi G. Thromboxane receptor blockade attenuates chronic cyclosporine nephrotoxicity and improves survival in rats with renal isograft. J Am Soc Nephrol. 1992 Mar;2(9):1398–1404. doi: 10.1681/ASN.V291398. [DOI] [PubMed] [Google Scholar]
  23. Raychowdhury M. K., Yukawa M., Collins L. J., McGrail S. H., Kent K. C., Ware J. A. Alternative splicing produces a divergent cytoplasmic tail in the human endothelial thromboxane A2 receptor. J Biol Chem. 1994 Jul 29;269(30):19256–19261. [PubMed] [Google Scholar]
  24. Remuzzi G., Imberti L., Rossini M., Morelli C., Carminati C., Cattaneo G. M., Bertani T. Increased glomerular thromboxane synthesis as a possible cause of proteinuria in experimental nephrosis. J Clin Invest. 1985 Jan;75(1):94–101. doi: 10.1172/JCI111703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rinder C. A., Halushka P. V., Sens M. A., Ploth D. W. Thromboxane A2 receptor blockade improves renal function and histopathology in the post-obstructive kidney. Kidney Int. 1994 Jan;45(1):185–192. doi: 10.1038/ki.1994.22. [DOI] [PubMed] [Google Scholar]
  26. Sato M., Abe K., Takeuchi K., Matsui K., Yasujima M., Fang S. N., Kanazawa M., Yoshida K., Kimura T., Yoshinaga K. Cyclic GMP accumulation by atriopeptins in cultured rat renal and vascular smooth muscle cells. Tohoku J Exp Med. 1988 Apr;154(4):399–411. doi: 10.1620/tjem.154.399. [DOI] [PubMed] [Google Scholar]
  27. Savarese T. M., Fraser C. M. In vitro mutagenesis and the search for structure-function relationships among G protein-coupled receptors. Biochem J. 1992 Apr 1;283(Pt 1):1–19. doi: 10.1042/bj2830001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Scharschmidt L. A., Dunn M. J. Prostaglandin synthesis by rat glomerular mesangial cells in culture. Effects of angiotensin II and arginine vasopressin. J Clin Invest. 1983 Jun;71(6):1756–1764. doi: 10.1172/JCI110931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Shenker A., Goldsmith P., Unson C. G., Spiegel A. M. The G protein coupled to the thromboxane A2 receptor in human platelets is a member of the novel Gq family. J Biol Chem. 1991 May 15;266(14):9309–9313. [PubMed] [Google Scholar]
  30. Spiegel A. M., Shenker A., Weinstein L. S. Receptor-effector coupling by G proteins: implications for normal and abnormal signal transduction. Endocr Rev. 1992 Aug;13(3):536–565. doi: 10.1210/edrv-13-3-536. [DOI] [PubMed] [Google Scholar]
  31. Spurney R. F., Fan P. Y., Ruiz P., Sanfilippo F., Pisetsky D. S., Coffman T. M. Thromboxane receptor blockade reduces renal injury in murine lupus nephritis. Kidney Int. 1992 Apr;41(4):973–982. doi: 10.1038/ki.1992.149. [DOI] [PubMed] [Google Scholar]
  32. Spurney R. F., Onorato J. J., Albers F. J., Coffman T. M. Thromboxane binding and signal transduction in rat glomerular mesangial cells. Am J Physiol. 1993 Feb;264(2 Pt 2):F292–F299. doi: 10.1152/ajprenal.1993.264.2.F292. [DOI] [PubMed] [Google Scholar]
  33. Stahl R. A., Thaiss F., Wenzel U., Schoeppe W., Helmchen U. A rat model of progressive chronic glomerular sclerosis: the role of thromboxane inhibition. J Am Soc Nephrol. 1992 May;2(11):1568–1577. doi: 10.1681/ASN.V2111568. [DOI] [PubMed] [Google Scholar]
  34. Suryanarayana S., Daunt D. A., Von Zastrow M., Kobilka B. K. A point mutation in the seventh hydrophobic domain of the alpha 2 adrenergic receptor increases its affinity for a family of beta receptor antagonists. J Biol Chem. 1991 Aug 15;266(23):15488–15492. [PubMed] [Google Scholar]
  35. Takahashi K., Schreiner G. F., Yamashita K., Christman B. W., Blair I., Badr K. F. Predominant functional roles for thromboxane A2 and prostaglandin E2 during late nephrotoxic serum glomerulonephritis in the rat. J Clin Invest. 1990 Jun;85(6):1974–1982. doi: 10.1172/JCI114661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Takahashi N., Kondo Y., Ito O., Igarashi Y., Omata K., Abe K. Vasopressin stimulates Cl- transport in ascending thin limb of Henle's loop in hamster. J Clin Invest. 1995 Apr;95(4):1623–1627. doi: 10.1172/JCI117836. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Takeuchi K., Abe K., Yasujima M., Sato M., Maeyama K., Watanabe T., Sato S., Inaba H., Yoshinaga K. Phosphoinositide hydrolysis and calcium mobilization induced by vasopressin and angiotensin II in cultured vascular smooth muscle cells. Tohoku J Exp Med. 1992 Jan;166(1):107–122. doi: 10.1620/tjem.166.107. [DOI] [PubMed] [Google Scholar]
  38. Takeuchi K., Abe T., Takahashi N., Abe K. Molecular cloning and intrarenal localization of rat prostaglandin E2 receptor EP3 subtype. Biochem Biophys Res Commun. 1993 Jul 30;194(2):885–891. doi: 10.1006/bbrc.1993.1904. [DOI] [PubMed] [Google Scholar]
  39. Takeuchi K., Alexander R. W., Nakamura Y., Tsujino T., Murphy T. J. Molecular structure and transcriptional function of the rat vascular AT1a angiotensin receptor gene. Circ Res. 1993 Oct;73(4):612–621. doi: 10.1161/01.res.73.4.612. [DOI] [PubMed] [Google Scholar]
  40. Takeuchi K., Takahashi N., Abe T., Abe K. Two isoforms of the rat kidney EP3 receptor derived by alternative RNA splicing: intrarenal expression co-localization. Biochem Biophys Res Commun. 1994 Mar 15;199(2):834–840. doi: 10.1006/bbrc.1994.1304. [DOI] [PubMed] [Google Scholar]
  41. Terada Y., Tomita K., Nonoguchi H., Marumo F. PCR localization of angiotensin II receptor and angiotensinogen mRNAs in rat kidney. Kidney Int. 1993 Jun;43(6):1251–1259. doi: 10.1038/ki.1993.177. [DOI] [PubMed] [Google Scholar]
  42. Tsien R. Y., Pozzan T., Rink T. J. Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator. J Cell Biol. 1982 Aug;94(2):325–334. doi: 10.1083/jcb.94.2.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Welch W. J., Wilcox C. S. Potentiation of tubuloglomerular feedback in the rat by thromboxane mimetic. Role of macula densa. J Clin Invest. 1992 Jun;89(6):1857–1865. doi: 10.1172/JCI115790. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Wolf G., Neilson E. G. Angiotensin II as a renal growth factor. J Am Soc Nephrol. 1993 Mar;3(9):1531–1540. doi: 10.1681/ASN.V391531. [DOI] [PubMed] [Google Scholar]
  45. von Heijne G. Patterns of amino acids near signal-sequence cleavage sites. Eur J Biochem. 1983 Jun 1;133(1):17–21. doi: 10.1111/j.1432-1033.1983.tb07424.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES