Abstract
Thyroid hormone (T3) plays a critical role in the development of the central nervous system and its deficiency during the early neonatal period results in severe brain damage. However the mechanisms involved and the genes specifically regulated by T3 during brain development are largely unknown. By using a subtractive hybridization technique we have isolated a number of cDNAs that represented mitochondrial genes (12S and 16S rRNAs and cytochrome c oxidase subunit III). The steady state level of all three RNAs was reduced in hypothyroid animals during the postnatal period and T3 administration restored control levels. During fetal life the level of 16S rRNA was decreased in the brain of hypothyroid animals, suggesting a prenatal effect of thyroid hormone on brain development. Since T3 does not affect the amount of mitochondrial DNA, the results suggest that the effect of T3 is at transcriptional and/or postranscriptional level. In addition, the transcript levels for two nuclear-encoded mitochondrial cytochrome c oxidase subunits: subunits IV and VIc were also decreased in the brains of hypothyroid animals. Hypothyroidism-induced changes in mitochondrial RNAs were followed by a concomitant 40% decrease in cytochrome c oxidase activity. This study shows that T3 is an important regulator of mitochondrial function in the neonatal brain and, more importantly, provides a molecular basis for the specific action of this hormone in the developing brain.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
- Desbois C., Aubert D., Legrand C., Pain B., Samarut J. A novel mechanism of action for v-ErbA: abrogation of the inactivation of transcription factor AP-1 by retinoic acid and thyroid hormone receptors. Cell. 1991 Nov 15;67(4):731–740. doi: 10.1016/0092-8674(91)90068-a. [DOI] [PubMed] [Google Scholar]
- Dussault J. H., Ruel J. Thyroid hormones and brain development. Annu Rev Physiol. 1987;49:321–334. doi: 10.1146/annurev.ph.49.030187.001541. [DOI] [PubMed] [Google Scholar]
- Evans R. M. The steroid and thyroid hormone receptor superfamily. Science. 1988 May 13;240(4854):889–895. doi: 10.1126/science.3283939. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fisher R. P., Topper J. N., Clayton D. A. Promoter selection in human mitochondria involves binding of a transcription factor to orientation-independent upstream regulatory elements. Cell. 1987 Jul 17;50(2):247–258. doi: 10.1016/0092-8674(87)90220-0. [DOI] [PubMed] [Google Scholar]
- Gadaleta M. N., Renis M., Minervini G. R., Serra I., Bleve T., Giovine A., Zacheo G., Giuffrida A. M. Effect of hypothyroidism on the biogenesis of free mitochondria in the cerebral hemispheres and in cerebellum of rat during postnatal development. Neurochem Res. 1985 Feb;10(2):163–177. doi: 10.1007/BF00964565. [DOI] [PubMed] [Google Scholar]
- Garstka H. L., Fäcke M., Escribano J. R., Wiesner R. J. Stoichiometry of mitochondrial transcripts and regulation of gene expression by mitochondrial transcription factor A. Biochem Biophys Res Commun. 1994 Apr 15;200(1):619–626. doi: 10.1006/bbrc.1994.1493. [DOI] [PubMed] [Google Scholar]
- Gómez C. J., De Guglielmone A. E., Duvilanski B. Effect of neonatal thyroidectomy on ribonucleic acid synthesis in developing-rat brain. Acta Physiol Lat Am. 1971;21(2):152–155. [PubMed] [Google Scholar]
- Izquierdo J. M., Luis A. M., Cuezva J. M. Postnatal mitochondrial differentiation in rat liver. Regulation by thyroid hormones of the beta-subunit of the mitochondrial F1-ATPase complex. J Biol Chem. 1990 Jun 5;265(16):9090–9097. [PubMed] [Google Scholar]
- Katyare S. S., Joshi M. V., Fatterpaker P., Sreenivasan A. Effect of thyroid deficiency on oxidative phosphorylation in rat liver, kidney, and brain mitochondria. Arch Biochem Biophys. 1977 Jul;182(1):155–163. doi: 10.1016/0003-9861(77)90294-6. [DOI] [PubMed] [Google Scholar]
- Luis A. M., Izquierdo J. M., Ostronoff L. K., Salinas M., Santarén J. F., Cuezva J. M. Translational regulation of mitochondrial differentiation in neonatal rat liver. Specific increase in the translational efficiency of the nuclear-encoded mitochondrial beta-F1-ATPase mRNA. J Biol Chem. 1993 Jan 25;268(3):1868–1875. [PubMed] [Google Scholar]
- Masters B. S., Stohl L. L., Clayton D. A. Yeast mitochondrial RNA polymerase is homologous to those encoded by bacteriophages T3 and T7. Cell. 1987 Oct 9;51(1):89–99. doi: 10.1016/0092-8674(87)90013-4. [DOI] [PubMed] [Google Scholar]
- Mellström B., Pipaón C., Naranjo J. R., Perez-Castillo A., Santos A. Differential effect of thyroid hormone on NGFI-A gene expression in developing rat brain. Endocrinology. 1994 Aug;135(2):583–588. doi: 10.1210/endo.135.2.8033806. [DOI] [PubMed] [Google Scholar]
- Mutvei A., Kuzela S., Nelson B. D. Control of mitochondrial transcription by thyroid hormone. Eur J Biochem. 1989 Mar 1;180(1):235–240. doi: 10.1111/j.1432-1033.1989.tb14638.x. [DOI] [PubMed] [Google Scholar]
- Obregon M. J., Mallol J., Pastor R., Morreale de Escobar G., Escobar del Rey F. L-thyroxine and 3,5,3'-triiodo-L-thyronine in rat embryos before onset of fetal thyroid function. Endocrinology. 1984 Jan;114(1):305–307. doi: 10.1210/endo-114-1-305. [DOI] [PubMed] [Google Scholar]
- Oppenheimer J. H., Koerner D., Schwartz H. L., Surks M. I. Specific nuclear triiodothyronine binding sites in rat liver and kidney. J Clin Endocrinol Metab. 1972 Aug;35(2):330–333. doi: 10.1210/jcem-35-2-330. [DOI] [PubMed] [Google Scholar]
- Oppenheimer J. H., Schwartz H. L., Mariash C. N., Kinlaw W. B., Wong N. C., Freake H. C. Advances in our understanding of thyroid hormone action at the cellular level. Endocr Rev. 1987 Aug;8(3):288–308. doi: 10.1210/edrv-8-3-288. [DOI] [PubMed] [Google Scholar]
- Perez-Castillo A., Bernal J., Ferreiro B., Pans T. The early ontogenesis of thyroid hormone receptor in the rat fetus. Endocrinology. 1985 Dec;117(6):2457–2461. doi: 10.1210/endo-117-6-2457. [DOI] [PubMed] [Google Scholar]
- Pikó L., Taylor K. D. Amounts of mitochondrial DNA and abundance of some mitochondrial gene transcripts in early mouse embryos. Dev Biol. 1987 Oct;123(2):364–374. doi: 10.1016/0012-1606(87)90395-2. [DOI] [PubMed] [Google Scholar]
- Pipaon C., Santos A., Perez-Castillo A. Thyroid hormone up-regulates NGFI-A gene expression in rat brain during development. J Biol Chem. 1992 Jan 5;267(1):21–23. [PubMed] [Google Scholar]
- Porterfield S. P., Hendrich C. E. The role of thyroid hormones in prenatal and neonatal neurological development--current perspectives. Endocr Rev. 1993 Feb;14(1):94–106. doi: 10.1210/edrv-14-1-94. [DOI] [PubMed] [Google Scholar]
- Pruitt S. C. Expression vectors permitting cDNA cloning and enrichment for specific sequences by hybridization/selection. Gene. 1988 Jun 15;66(1):121–134. doi: 10.1016/0378-1119(88)90230-2. [DOI] [PubMed] [Google Scholar]
- Saatcioglu F., Deng T., Karin M. A novel cis element mediating ligand-independent activation by c-ErbA: implications for hormonal regulation. Cell. 1993 Dec 17;75(6):1095–1105. doi: 10.1016/0092-8674(93)90319-l. [DOI] [PubMed] [Google Scholar]
- Samuels H. H., Forman B. M., Horowitz Z. D., Ye Z. S. Regulation of gene expression by thyroid hormone. J Clin Invest. 1988 Apr;81(4):957–967. doi: 10.1172/JCI113449. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Satav J. G., Katyare S. S. Effect of experimental thyrotoxicosis on oxidative phosphorylation in rat liver, kidney and brain mitochondria. Mol Cell Endocrinol. 1982 Oct;28(2):173–189. doi: 10.1016/0303-7207(82)90030-2. [DOI] [PubMed] [Google Scholar]
- Schapira A. H. Mitochondrial cytopathies. Curr Opin Neurobiol. 1993 Oct;3(5):760–767. doi: 10.1016/0959-4388(93)90150-w. [DOI] [PubMed] [Google Scholar]
- Schwartz H. L., Oppenheimer J. H. Ontogenesis of 3,5,3'-triiodothyronine receptors in neonatal rat brain: dissociation between receptor concentration and stimulation of oxygen consumption by 3,5,3'-triiodothyronine. Endocrinology. 1978 Sep;103(3):943–948. doi: 10.1210/endo-103-3-943. [DOI] [PubMed] [Google Scholar]
- Sterling K., Campbell G. A., Brenner M. A. Purification of the mitochondrial triiodothyronine (T3) receptor from rat liver. Acta Endocrinol (Copenh) 1984 Mar;105(3):391–397. doi: 10.1530/acta.0.1050391. [DOI] [PubMed] [Google Scholar]
- Sterling K. Direct thyroid hormone activation of mitochondria: the role of adenine nucleotide translocase. Endocrinology. 1986 Jul;119(1):292–295. doi: 10.1210/endo-119-1-292. [DOI] [PubMed] [Google Scholar]
- Sterling K., Milch P. O. Thyroid hormone binding by a component of mitochondrial membrane. Proc Natl Acad Sci U S A. 1975 Aug;72(8):3225–3229. doi: 10.1073/pnas.72.8.3225. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strait K. A., Schwartz H. L., Perez-Castillo A., Oppenheimer J. H. Relationship of c-erbA mRNA content to tissue triiodothyronine nuclear binding capacity and function in developing and adult rats. J Biol Chem. 1990 Jun 25;265(18):10514–10521. [PubMed] [Google Scholar]
- Strait K. A., Zou L., Oppenheimer J. H. Beta 1 isoform-specific regulation of a triiodothyronine-induced gene during cerebellar development. Mol Endocrinol. 1992 Nov;6(11):1874–1880. doi: 10.1210/mend.6.11.1282672. [DOI] [PubMed] [Google Scholar]
- Topper J. N., Clayton D. A. Characterization of human MRP/Th RNA and its nuclear gene: full length MRP/Th RNA is an active endoribonuclease when assembled as an RNP. Nucleic Acids Res. 1990 Feb 25;18(4):793–799. doi: 10.1093/nar/18.4.793. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tzagoloff A., Myers A. M. Genetics of mitochondrial biogenesis. Annu Rev Biochem. 1986;55:249–285. doi: 10.1146/annurev.bi.55.070186.001341. [DOI] [PubMed] [Google Scholar]
- Vallejo C. G., Sillero M. A., Marco R. Mitochondrial maturation during Artemia salina embryogenesis. General description of the process. Cell Mol Biol Incl Cyto Enzymol. 1979;25(2):113–124. [PubMed] [Google Scholar]
- Virbasius C. A., Virbasius J. V., Scarpulla R. C. NRF-1, an activator involved in nuclear-mitochondrial interactions, utilizes a new DNA-binding domain conserved in a family of developmental regulators. Genes Dev. 1993 Dec;7(12A):2431–2445. doi: 10.1101/gad.7.12a.2431. [DOI] [PubMed] [Google Scholar]
- Wiesner R. J., Kurowski T. T., Zak R. Regulation by thyroid hormone of nuclear and mitochondrial genes encoding subunits of cytochrome-c oxidase in rat liver and skeletal muscle. Mol Endocrinol. 1992 Sep;6(9):1458–1467. doi: 10.1210/mend.6.9.1331777. [DOI] [PubMed] [Google Scholar]
- Xu B., Clayton D. A. Assignment of a yeast protein necessary for mitochondrial transcription initiation. Nucleic Acids Res. 1992 Mar 11;20(5):1053–1059. doi: 10.1093/nar/20.5.1053. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yu V. C., Delsert C., Andersen B., Holloway J. M., Devary O. V., När A. M., Kim S. Y., Boutin J. M., Glass C. K., Rosenfeld M. G. RXR beta: a coregulator that enhances binding of retinoic acid, thyroid hormone, and vitamin D receptors to their cognate response elements. Cell. 1991 Dec 20;67(6):1251–1266. doi: 10.1016/0092-8674(91)90301-e. [DOI] [PubMed] [Google Scholar]
- Zhang X. K., Hoffmann B., Tran P. B., Graupner G., Pfahl M. Retinoid X receptor is an auxiliary protein for thyroid hormone and retinoic acid receptors. Nature. 1992 Jan 30;355(6359):441–446. doi: 10.1038/355441a0. [DOI] [PubMed] [Google Scholar]







