Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1995 Aug;96(2):1100–1107. doi: 10.1172/JCI118096

Dominant expression of type III hyperlipoproteinemia. Pathophysiological insights derived from the structural and kinetic characteristics of ApoE-1 (Lys146-->Glu).

W A Mann 1, P Lohse 1, R E Gregg 1, R Ronan 1, J M Hoeg 1, L A Zech 1, H B Brewer Jr 1
PMCID: PMC185299  PMID: 7635945

Abstract

Type III hyperlipoproteinemia is characterized by delayed chylomicron and VLDL remnant catabolism and is associated with homozygosity for the apoE-2 allele. We have identified a kindred in which heterozygosity for an apoE mutant, apoE-1 (Lys146-->Glu), is dominantly associated with the expression of type III hyperlipoproteinemia. DNA sequence analysis of the mutant apoE gene revealed a single-point mutation that resulted in the substitution of glutamic acid (GAG) for lysine (AAG) at residue 146 in the proposed receptor-binding domain of apoE. The pathophysiological effect of this mutation was investigated in vivo by kinetic studies in the patient and six normal subjects, and in vitro by binding studies of apoE-1 (Lys146-->Glu) to LDL receptors on human fibroblasts and to heparin. The kinetic studies revealed that apoE-1 (Lys146-->Glu) was catabolized significantly slower than apoE-3 in normals (P < 0.005). In the proband, the plasma residence times of both apoEs were substantially longer and the production rate of total apoE was about two times higher than in the control subjects. ApoE-1 (Lys146-->Glu) was defective in interacting with LDL receptors, and its ability to displace LDL in an in vitro assay was reduced to 7.7% compared with apoE-3. The affinity of apoE-1 (Lys146-->Glu) to heparin was also markedly reduced compared with both apoE-2 (Arg158-->Cys) and apoE-3. These abnormal in vitro binding characteristics and the altered in vivo metabolism of apoE-1 (Lys146-->Glu) are proposed to result in the functional dominance of this mutation in the affected kindred.

Full text

PDF
1100

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BITTER T., MUIR H. M. A modified uronic acid carbazole reaction. Anal Biochem. 1962 Oct;4:330–334. doi: 10.1016/0003-2697(62)90095-7. [DOI] [PubMed] [Google Scholar]
  2. Beisiegel U., Krapp A., Weber W., Olivecrona G. The role of alpha 2M receptor/LRP in chylomicron remnant metabolism. Ann N Y Acad Sci. 1994 Sep 10;737:53–69. doi: 10.1111/j.1749-6632.1994.tb44301.x. [DOI] [PubMed] [Google Scholar]
  3. Bilheimer D. W., Eisenberg S., Levy R. I. The metabolism of very low density lipoprotein proteins. I. Preliminary in vitro and in vivo observations. Biochim Biophys Acta. 1972 Feb 21;260(2):212–221. doi: 10.1016/0005-2760(72)90034-3. [DOI] [PubMed] [Google Scholar]
  4. Brewer H. B., Jr, Zech L. A., Gregg R. E., Schwartz D., Schaefer E. J. NIH conference. Type III hyperlipoproteinemia: diagnosis, molecular defects, pathology, and treatment. Ann Intern Med. 1983 May;98(5 Pt 1):623–640. doi: 10.7326/0003-4819-98-5-623. [DOI] [PubMed] [Google Scholar]
  5. Cardin A. D., Hirose N., Blankenship D. T., Jackson R. L., Harmony J. A., Sparrow D. A., Sparrow J. T. Binding of a high reactive heparin to human apolipoprotein E: identification of two heparin-binding domains. Biochem Biophys Res Commun. 1986 Jan 29;134(2):783–789. doi: 10.1016/s0006-291x(86)80489-2. [DOI] [PubMed] [Google Scholar]
  6. Davignon J., Gregg R. E., Sing C. F. Apolipoprotein E polymorphism and atherosclerosis. Arteriosclerosis. 1988 Jan-Feb;8(1):1–21. doi: 10.1161/01.atv.8.1.1. [DOI] [PubMed] [Google Scholar]
  7. Fazio S., Horie Y., Weisgraber K. H., Havekes L. M., Rall S. C., Jr Preferential association of apolipoprotein E Leiden with very low density lipoproteins of human plasma. J Lipid Res. 1993 Mar;34(3):447–453. [PubMed] [Google Scholar]
  8. Ghiselli G., Schaefer E. J., Zech L. A., Gregg R. E., Brewer H. B., Jr Increased prevalence of apolipoprotein E4 in type V hyperlipoproteinemia. J Clin Invest. 1982 Aug;70(2):474–477. doi: 10.1172/JCI110638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Goldstein J. L., Brown M. S. Binding and degradation of low density lipoproteins by cultured human fibroblasts. Comparison of cells from a normal subject and from a patient with homozygous familial hypercholesterolemia. J Biol Chem. 1974 Aug 25;249(16):5153–5162. [PubMed] [Google Scholar]
  10. Gregg R. E., Zech L. A., Schaefer E. J., Brewer H. B., Jr Apolipoprotein E metabolism in normolipoproteinemic human subjects. J Lipid Res. 1984 Nov;25(11):1167–1176. [PubMed] [Google Scholar]
  11. Gregg R. E., Zech L. A., Schaefer E. J., Brewer H. B., Jr Type III hyperlipoproteinemia: defective metabolism of an abnormal apolipoprotein E. Science. 1981 Feb 6;211(4482):584–586. doi: 10.1126/science.7455696. [DOI] [PubMed] [Google Scholar]
  12. HAVEL R. J., EDER H. A., BRAGDON J. H. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest. 1955 Sep;34(9):1345–1353. doi: 10.1172/JCI103182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Havekes L., de Wit E., Leuven J. G., Klasen E., Utermann G., Weber W., Beisiegel U. Apolipoprotein E3-Leiden. A new variant of human apolipoprotein E associated with familial type III hyperlipoproteinemia. Hum Genet. 1986 Jun;73(2):157–163. doi: 10.1007/BF00291607. [DOI] [PubMed] [Google Scholar]
  14. Havel R. J. Familial dysbetalipoproteinemia. New aspects of pathogenesis and diagnosis. Med Clin North Am. 1982 Mar;66(2):441–454. doi: 10.1016/s0025-7125(16)31429-8. [DOI] [PubMed] [Google Scholar]
  15. Havel R. J., Kotite L., Kane J. P., Tun P., Bersot T. Atypical familial dysbetalipoproteinemia associated with apolipoprotein phenotype E3/3. J Clin Invest. 1983 Jul;72(1):379–387. doi: 10.1172/JCI110978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Havinga J. R., Lohse P., Beisiegel U. Immunoblotting and ligand blotting of the low-density lipoprotein receptor of human liver, HepG2 cells and HeLa cells. FEBS Lett. 1987 Jun 1;216(2):275–280. doi: 10.1016/0014-5793(87)80705-6. [DOI] [PubMed] [Google Scholar]
  17. Hoeg J. M., Demosky S. J., Jr, Schaefer E. J., Starzl T. E., Brewer H. B., Jr Characterization of hepatic low density lipoprotein binding and cholesterol metabolism in normal and homozygous familial hypercholesterolemic subjects. J Clin Invest. 1984 Feb;73(2):429–436. doi: 10.1172/JCI111229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Horie Y., Fazio S., Westerlund J. R., Weisgraber K. H., Rall S. C., Jr The functional characteristics of a human apolipoprotein E variant (cysteine at residue 142) may explain its association with dominant expression of type III hyperlipoproteinemia. J Biol Chem. 1992 Jan 25;267(3):1962–1968. [PubMed] [Google Scholar]
  19. Innerarity T. L., Pitas R. E., Mahley R. W. Lipoprotein-receptor interactions. Methods Enzymol. 1986;129:542–565. doi: 10.1016/0076-6879(86)29091-6. [DOI] [PubMed] [Google Scholar]
  20. Innerarity T. L., Weisgraber K. H., Arnold K. S., Rall S. C., Jr, Mahley R. W. Normalization of receptor binding of apolipoprotein E2. Evidence for modulation of the binding site conformation. J Biol Chem. 1984 Jun 10;259(11):7261–7267. [PubMed] [Google Scholar]
  21. Ji Z. S., Brecht W. J., Miranda R. D., Hussain M. M., Innerarity T. L., Mahley R. W. Role of heparan sulfate proteoglycans in the binding and uptake of apolipoprotein E-enriched remnant lipoproteins by cultured cells. J Biol Chem. 1993 May 15;268(14):10160–10167. [PubMed] [Google Scholar]
  22. Ji Z. S., Fazio S., Lee Y. L., Mahley R. W. Secretion-capture role for apolipoprotein E in remnant lipoprotein metabolism involving cell surface heparan sulfate proteoglycans. J Biol Chem. 1994 Jan 28;269(4):2764–2772. [PubMed] [Google Scholar]
  23. Ji Z. S., Fazio S., Mahley R. W. Variable heparan sulfate proteoglycan binding of apolipoprotein E variants may modulate the expression of type III hyperlipoproteinemia. J Biol Chem. 1994 May 6;269(18):13421–13428. [PubMed] [Google Scholar]
  24. Lilly-Stauderman M., Brown T. L., Balasubramaniam A., Harmony J. A. Heparin releases newly synthesized cell surface-associated apolipoprotein E from HepG2 cells. J Lipid Res. 1993 Feb;34(2):190–200. [PubMed] [Google Scholar]
  25. Lohse P., Mann W. A., Stein E. A., Brewer H. B., Jr Apolipoprotein E-4Philadelphia (Glu13----Lys,Arg145----Cys). Homozygosity for two rare point mutations in the apolipoprotein E gene combined with severe type III hyperlipoproteinemia. J Biol Chem. 1991 Jun 5;266(16):10479–10484. [PubMed] [Google Scholar]
  26. Lohse P., Rader D. J., Brewer H. B., Jr Heterozygosity for apolipoprotein E-4Philadelphia(Glu13----Lys, Arg145----Cys) is associated with incomplete dominance of type III hyperlipoproteinemia. J Biol Chem. 1992 Jul 5;267(19):13642–13646. [PubMed] [Google Scholar]
  27. Mahley R. W. Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science. 1988 Apr 29;240(4852):622–630. doi: 10.1126/science.3283935. [DOI] [PubMed] [Google Scholar]
  28. Mahley R. W., Weisgraber K. H., Innerarity T. L. Interaction of plasma lipoproteins containing apolipoproteins B and E with heparin and cell surface receptors. Biochim Biophys Acta. 1979 Oct 26;575(1):81–91. doi: 10.1016/0005-2760(79)90133-4. [DOI] [PubMed] [Google Scholar]
  29. Mann W. A., Gregg R. E., Sprecher D. L., Brewer H. B., Jr Apolipoprotein E-1Harrisburg: a new variant of apolipoprotein E dominantly associated with type III hyperlipoproteinemia. Biochim Biophys Acta. 1989 Oct 17;1005(3):239–244. doi: 10.1016/0005-2760(89)90043-x. [DOI] [PubMed] [Google Scholar]
  30. Messing J. New M13 vectors for cloning. Methods Enzymol. 1983;101:20–78. doi: 10.1016/0076-6879(83)01005-8. [DOI] [PubMed] [Google Scholar]
  31. Moriyama K., Sasaki J., Matsunaga A., Arakawa F., Takada Y., Araki K., Kaneko S., Arakawa K. Apolipoprotein E1 Lys-146----Glu with type III hyperlipoproteinemia. Biochim Biophys Acta. 1992 Sep 22;1128(1):58–64. doi: 10.1016/0005-2760(92)90257-v. [DOI] [PubMed] [Google Scholar]
  32. Mulder M., Lombardi P., Jansen H., van Berkel T. J., Frants R. R., Havekes L. M. Low density lipoprotein receptor internalizes low density and very low density lipoproteins that are bound to heparan sulfate proteoglycans via lipoprotein lipase. J Biol Chem. 1993 May 5;268(13):9369–9375. [PubMed] [Google Scholar]
  33. Nykjaer A., Bengtsson-Olivecrona G., Lookene A., Moestrup S. K., Petersen C. M., Weber W., Beisiegel U., Gliemann J. The alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein binds lipoprotein lipase and beta-migrating very low density lipoprotein associated with the lipase. J Biol Chem. 1993 Jul 15;268(20):15048–15055. [PubMed] [Google Scholar]
  34. Oswald B., Shelburne F., Landis B., Linker A., Quarfordt S. The relevance of glycosaminoglycan sulfates to Apo E induced lipid uptake by hepatocyte monolayers. Biochem Biophys Res Commun. 1986 Nov 26;141(1):158–164. doi: 10.1016/s0006-291x(86)80348-5. [DOI] [PubMed] [Google Scholar]
  35. RADDING C. M., STEINBERG D. Studies on the synthesis and secretion of serum lipoproteins by rat liver slices. J Clin Invest. 1960 Oct;39:1560–1569. doi: 10.1172/JCI104177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Rall S. C., Jr, Newhouse Y. M., Clarke H. R., Weisgraber K. H., McCarthy B. J., Mahley R. W., Bersot T. P. Type III hyperlipoproteinemia associated with apolipoprotein E phenotype E3/3. Structure and genetics of an apolipoprotein E3 variant. J Clin Invest. 1989 Apr;83(4):1095–1101. doi: 10.1172/JCI113988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Rall S. C., Jr, Weisgraber K. H., Innerarity T. L., Bersot T. P., Mahley R. W., Blum C. B. Identification of a new structural variant of human apolipoprotein E, E2(Lys146 leads to Gln), in a type III hyperlipoproteinemic subject with the E3/2 phenotype. J Clin Invest. 1983 Oct;72(4):1288–1297. doi: 10.1172/JCI111085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Rapraeger A. C., Krufka A., Olwin B. B. Requirement of heparan sulfate for bFGF-mediated fibroblast growth and myoblast differentiation. Science. 1991 Jun 21;252(5013):1705–1708. doi: 10.1126/science.1646484. [DOI] [PubMed] [Google Scholar]
  39. Sakaguchi K., Yanagishita M., Takeuchi Y., Aurbach G. D. Identification of heparan sulfate proteoglycan as a high affinity receptor for acidic fibroblast growth factor (aFGF) in a parathyroid cell line. J Biol Chem. 1991 Apr 15;266(11):7270–7278. [PubMed] [Google Scholar]
  40. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Shafi S., Brady S. E., Bensadoun A., Havel R. J. Role of hepatic lipase in the uptake and processing of chylomicron remnants in rat liver. J Lipid Res. 1994 Apr;35(4):709–720. [PubMed] [Google Scholar]
  42. Smit M., de Knijff P., van der Kooij-Meijs E., Groenendijk C., van den Maagdenberg A. M., Gevers Leuven J. A., Stalenhoef A. F., Stuyt P. M., Frants R. R., Havekes L. M. Genetic heterogeneity in familial dysbetalipoproteinemia. The E2(lys146----gln) variant results in a dominant mode of inheritance. J Lipid Res. 1990 Jan;31(1):45–53. [PubMed] [Google Scholar]
  43. Utermann G., Hees M., Steinmetz A. Polymorphism of apolipoprotein E and occurrence of dysbetalipoproteinaemia in man. Nature. 1977 Oct 13;269(5629):604–607. doi: 10.1038/269604a0. [DOI] [PubMed] [Google Scholar]
  44. Wardell M. R., Weisgraber K. H., Havekes L. M., Rall S. C., Jr Apolipoprotein E3-Leiden contains a seven-amino acid insertion that is a tandem repeat of residues 121-127. J Biol Chem. 1989 Dec 15;264(35):21205–21210. [PubMed] [Google Scholar]
  45. Warnick G. R., Benderson J., Albers J. J. Dextran sulfate-Mg2+ precipitation procedure for quantitation of high-density-lipoprotein cholesterol. Clin Chem. 1982 Jun;28(6):1379–1388. [PubMed] [Google Scholar]
  46. Weisgraber K. H., Innerarity T. L., Mahley R. W. Abnormal lipoprotein receptor-binding activity of the human E apoprotein due to cysteine-arginine interchange at a single site. J Biol Chem. 1982 Mar 10;257(5):2518–2521. [PubMed] [Google Scholar]
  47. Weisgraber K. H., Rall S. C., Jr, Mahley R. W. Human E apoprotein heterogeneity. Cysteine-arginine interchanges in the amino acid sequence of the apo-E isoforms. J Biol Chem. 1981 Sep 10;256(17):9077–9083. [PubMed] [Google Scholar]
  48. Weisgraber K. H., Rall S. C., Jr, Mahley R. W., Milne R. W., Marcel Y. L., Sparrow J. T. Human apolipoprotein E. Determination of the heparin binding sites of apolipoprotein E3. J Biol Chem. 1986 Feb 15;261(5):2068–2076. [PubMed] [Google Scholar]
  49. Williams K. J., Fless G. M., Petrie K. A., Snyder M. L., Brocia R. W., Swenson T. L. Mechanisms by which lipoprotein lipase alters cellular metabolism of lipoprotein(a), low density lipoprotein, and nascent lipoproteins. Roles for low density lipoprotein receptors and heparan sulfate proteoglycans. J Biol Chem. 1992 Jul 5;267(19):13284–13292. [PubMed] [Google Scholar]
  50. Wilson C., Wardell M. R., Weisgraber K. H., Mahley R. W., Agard D. A. Three-dimensional structure of the LDL receptor-binding domain of human apolipoprotein E. Science. 1991 Jun 28;252(5014):1817–1822. doi: 10.1126/science.2063194. [DOI] [PubMed] [Google Scholar]
  51. Yayon A., Klagsbrun M., Esko J. D., Leder P., Ornitz D. M. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell. 1991 Feb 22;64(4):841–848. doi: 10.1016/0092-8674(91)90512-w. [DOI] [PubMed] [Google Scholar]
  52. Zannis V. I., Breslow J. L. Human very low density lipoprotein apolipoprotein E isoprotein polymorphism is explained by genetic variation and posttranslational modification. Biochemistry. 1981 Feb 17;20(4):1033–1041. doi: 10.1021/bi00507a059. [DOI] [PubMed] [Google Scholar]
  53. Zannis V. I. Genetic polymorphism in human apolipoprotein E. Methods Enzymol. 1986;128:823–851. doi: 10.1016/0076-6879(86)28109-4. [DOI] [PubMed] [Google Scholar]
  54. de Knijff P., van den Maagdenberg A. M., Stalenhoef A. F., Leuven J. A., Demacker P. N., Kuyt L. P., Frants R. R., Havekes L. M. Familial dysbetalipoproteinemia associated with apolipoprotein E3-Leiden in an extended multigeneration pedigree. J Clin Invest. 1991 Aug;88(2):643–655. doi: 10.1172/JCI115349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. van den Maagdenberg A. M., de Knijff P., Stalenhoef A. F., Gevers Leuven J. A., Havekes L. M., Frants R. R. Apolipoprotein E*3-Leiden allele results from a partial gene duplication in exon 4. Biochem Biophys Res Commun. 1989 Dec 15;165(2):851–857. doi: 10.1016/s0006-291x(89)80044-0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES