Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1983 Sep;24(3):401–408. doi: 10.1128/aac.24.3.401

Inhibitory effect of cerulenin and sodium butyrate on germination of Candida albicans.

K A Hoberg, R L Cihlar, R A Calderone
PMCID: PMC185332  PMID: 6357077

Abstract

Candida albicans germination in liquid medium was inhibition by the antilipogenic agent cerulenin and the fatty acid sodium butyrate. Although these inhibitors prevented germ tube emergence at concentrations of 1 microgram/ml and 20 mM, respectively, neither significantly affected cell viability as judged by trypan blue staining or the rate of protein biosynthesis throughout the time course of the experiments. Cerulenin treatment resulted in inhibition of lipid biosynthesis, but lipid biosynthetic capabilities remained unaltered in sodium butyrate-supplemented cultures. Because each inhibitor blocks germination by different mechanisms, their utility in distinguishing events directly correlated to germination was examined. In this context, chitin synthase activity was inhibited by both compounds, confirming the importance of chitin biosynthesis in C. albicans germination.

Full text

PDF

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altenburg B. C., Via D. P., Steiner S. H. Modification of the phenotype of murine sarcoma virus-transformed cells by sodium butyrate. Effects on morphology and cytoskeletal elements. Exp Cell Res. 1976 Oct 15;102(2):223–231. doi: 10.1016/0014-4827(76)90036-7. [DOI] [PubMed] [Google Scholar]
  2. Brambl R., Wenzler H., Josephson M. Mitochondrial biogenesis during fungal spore germination: effects of the antilipogenic antibiotic cerulenin upon Botryodiplodia spores. J Bacteriol. 1978 Aug;135(2):311–317. doi: 10.1128/jb.135.2.311-317.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Braun P. C., Calderone R. A. Chitin synthesis in Candida albicans: comparison of yeast and hyphal forms. J Bacteriol. 1978 Mar;133(3):1472–1477. doi: 10.1128/jb.133.3.1472-1477.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chance K., Hemmingsen S., Weeks G. Effect of cerulenin on the growth and differentiation of Dictyostelium discoideum. J Bacteriol. 1976 Oct;128(1):21–27. doi: 10.1128/jb.128.1.21-27.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chattaway F. W., Wheeler P. R., O'Reilly J. Involvement of adenosine 3':5'-cyclic monophosphate in the germination of blastospores of Candida albicans. J Gen Microbiol. 1981 Apr;123(2):233–240. doi: 10.1099/00221287-123-2-233. [DOI] [PubMed] [Google Scholar]
  6. Chiew Y. Y., Shepherd M. G., Sullivan P. A. Regulation of chitin synthesis during germ-tube formation in Candida albicans. Arch Microbiol. 1980 Mar;125(1-2):97–104. doi: 10.1007/BF00403204. [DOI] [PubMed] [Google Scholar]
  7. Contreras I., Weissborn A., Amemiya K., Mansour J., Henry S., Shapiro L., Bender R. The effect of termination of membrane phospholipid synthesis on cell-dependent events in Caulobacter. J Mol Biol. 1980 Apr;138(2):401–409. doi: 10.1016/0022-2836(80)90295-8. [DOI] [PubMed] [Google Scholar]
  8. Dow J. M., Carreon R. R., Villa V. D. Role of membranes of mycelial Mucor rouxii in synthesis and secretion of cell wall matrix polymers. J Bacteriol. 1981 Jan;145(1):272–279. doi: 10.1128/jb.145.1.272-279.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Durán A., Bowers B., Cabib E. Chitin synthetase zymogen is attached to the yeast plasma membrane. Proc Natl Acad Sci U S A. 1975 Oct;72(10):3952–3955. doi: 10.1073/pnas.72.10.3952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ito E. T., Cihlar R. L., Inderlied C. B. Lipid synthesis during morphogenesis of Mucor racemosus. J Bacteriol. 1982 Nov;152(2):880–887. doi: 10.1128/jb.152.2.880-887.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kruh J. Effects of sodium butyrate, a new pharmacological agent, on cells in culture. Mol Cell Biochem. 1982 Feb 5;42(2):65–82. doi: 10.1007/BF00222695. [DOI] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Manning M., Mitchell T. G. Strain variation and morphogenesis of yeast- and mycelial-phase Candida albicans in low-sulfate, synthetic medium. J Bacteriol. 1980 May;142(2):714–719. doi: 10.1128/jb.142.2.714-719.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Marriott M. S. Mannan-protein location and biosynthesis in plasma membranes from the yeast form of Candida albicans. J Gen Microbiol. 1977 Nov;103(1):51–59. doi: 10.1099/00221287-103-1-51. [DOI] [PubMed] [Google Scholar]
  15. Omura S. The antibiotic cerulenin, a novel tool for biochemistry as an inhibitor of fatty acid synthesis. Bacteriol Rev. 1976 Sep;40(3):681–697. doi: 10.1128/br.40.3.681-697.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Singh M., Jayakumar A., Prasad R. The effect of altered ergosterol content on the transport of various amino acids in Candida albicans. Biochim Biophys Acta. 1979 Jul 19;555(1):42–55. doi: 10.1016/0005-2736(79)90070-1. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES